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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
Accurate weather forecasting plays a vital role in sectors such as agriculture, transportation, energy, and disaster 
management. With the increasing availability of historical meteorological data, time series forecasting has 
emerged as a powerful approach to predicting weather conditions. This study explores the application of various 
time series models including statistical, machine learning, and deep learning techniques to forecast key weather 
parameters such as temperature, humidity, and precipitation. The model is trained using Adam optimizer with 
0.001 learning rate and calculate the loss using Mean Squared Error. Historical weather data is pre-processed to 
address issues like missing values, seasonality, and noise, and models are evaluated based on metrics such as 
Mean Squared Error. Training Loss and Validation Loss is calculated for various epochs. The prediction is done 
by using validation set. Results demonstrate that while statistical models perform adequately for short-term 
forecasts, deep learning methods capture complex temporal patterns more effectively. 
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I. INTRODUCTION 
Weather prediction is an essential aspect of modern 
society, influencing a wide range of sectors including 
agriculture, aviation, transportation, energy management, 
and disaster preparedness. With climate variability and 
extreme weather events becoming more frequent, the 
demand for accurate and timely weather forecasts has 
grown significantly. Traditionally, weather forecasting has 
relied on numerical weather prediction (NWP) models that 
use complex mathematical equations and physical laws of 
atmospheric motion. While these models have achieved 
considerable success, they are often computationally 
intensive and may struggle with capturing local variations 
and short-term trends [1]. 
In recent years, the availability of large-scale historical 
weather data has opened new avenues for data-driven 
forecasting techniques. Among these, time series analysis 
has gained prominence as an effective approach for 
modelling and predicting meteorological variables such as 
temperature, humidity, rainfall, and wind speed. Time 
series forecasting leverages the temporal dependencies in 
data to identify trends, seasonality, and irregular 
fluctuations, allowing for the prediction of future values 
based on past observations. 
This study investigates the application of various time 
series forecasting techniques including statistical models 
like ARIMA, machine learning algorithms, and deep 
learning architectures such as Long Short-Term Memory 

(LSTM) networks to predict key weather parameters. The 
models are trained and evaluated on historical 
meteorological data, with preprocessing steps applied to 
handle missing values, noise, and seasonal patterns. The 
training process utilizes the Adam optimizer with a 
learning rate of 0.001, and Mean Squared Error (MSE) is 
employed as the primary loss function and evaluation 
metric [2][3]. 
Through comparative analysis of training loss and 
validation loss across different epochs, the performance of 
the models is assessed to determine their suitability for 
short-term and long-term forecasting. The results 
demonstrate that while traditional statistical models are 
effective for simpler patterns and short-term forecasts, 
deep learning models offer improved accuracy in 
capturing complex temporal dependencies and non-linear 
trends in the data. 
This paper aims to contribute to the growing field of data-
driven weather forecasting by providing insights into the 
capabilities and limitations of various time series 
approaches. The findings may serve as a foundation for 
developing more robust and scalable weather prediction 
systems in the future [4]. 

II. LITERATURE REVIEW  
Weather forecasting has long been a critical research area 
due to its importance in agriculture, transportation, disaster 
management, and energy planning. With the increasing 
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availability of historical meteorological data, machine 
learning and deep learning approaches, particularly time 
series models, have gained popularity for their ability to 
uncover complex temporal patterns. 

Traditional Statistical Methods: 
Early approaches relied heavily on statistical models such 
as ARIMA (Auto Regressive Integrated Moving Average), 
Exponential Smoothing, and Linear Regression. For 
instance, Box and Jenkins (1976) developed ARIMA, 
which remains a baseline for time series forecasting. 
Although effective for linear and stationary data, these 
models struggle with nonlinear and chaotic behaviour 
typically observed in weather data. 

Machine Learning Techniques: 
Machine learning methods, such as Support Vector 
Regression (SVR), Random Forests, and Gradient 
Boosting Machines, have shown improved accuracy over 
statistical models by capturing non-linear relationships. 
However, they often lack the ability to effectively learn 
temporal dependencies across long time lags, limiting their 
applicability for long-term forecasting. 

Deep Learning and LSTM Models: 
Recent advances in deep learning have introduced models 
capable of learning from raw time series data without 
heavy feature engineering. In particular, Long Short-Term 
Memory (LSTM) networks, introduced by Hochreiter and 
Schmidhuber (1997), have emerged as a powerful tool for 
sequential modelling. LSTM networks address the 
vanishing gradient problem found in standard RNNs and 
are capable of remembering information over long time 
spans, making them well-suited for meteorological 
forecasting. 
Several studies have demonstrated the effectiveness of 
LSTM in weather prediction, particularly in modelling 
complex, non-linear, and seasonal patterns present in 
meteorological time series data. For instance, researchers 
have shown that LSTM networks outperform traditional 
models like ARIMA and machine learning techniques 
such as Support Vector Regression (SVR) when applied to 
datasets involving temperature, humidity, and wind speed 
forecasting. The ability of LSTM to retain long-term 
dependencies through its memory cell structure allows it 
to capture subtle temporal relationships that simpler 
models often miss. Additionally, studies have found that 
LSTM performs robustly in both short-term and long-term 
forecasting scenarios, especially when combined with 
techniques like attention mechanisms or exogenous 
variable integration. These findings reinforce the 
suitability of LSTM as a powerful tool for accurate and 
reliable weather prediction. Shi et al. (2015) proposed a 
deep learning approach using LSTM for rainfall 
prediction, achieving higher accuracy compared to 
traditional models. 
Recent studies provide further theoretical and applied 
context for the use of LSTM and related architectures in 
sequential data modelling: 

Yu et al. (2019) offer a comprehensive review of recurrent 
neural networks (RNNs), with a deep dive into LSTM cell 
mechanics, gating functions, and architectural variations. 
Their work lays the foundational understanding required to 
adapt LSTMs for time series tasks like weather prediction 
[5]. 
Sherstinsky (2020) presents a clear and intuitive overview 
of RNNs and LSTM networks, highlighting their strengths 
in capturing temporal dependencies and mitigating 
vanishing gradient issues. This supports the selection of 
LSTM for modeling meteorological time series where 
memory of past states is crucial [6]. 
Van Houdt et al. (2020) provide a focused review of 
LSTM models, discussing improvements, applications, 
and training strategies. They emphasize LSTM's role in 
domains requiring temporal pattern recognition, which 
includes weather forecasting [7]. 
Jin et al. (2023) survey Spatio-Temporal Graph Neural 
Networks (ST-GNNs), offering a future direction for 
combining spatial and temporal features, especially 
relevant when extending LSTM-based models to include 
geographic data for region-specific weather predictions 
[8]. 
Jia et al. (2022) explore feature dimensionality reduction 
techniques. Their insights are relevant when working with 
multivariate meteorological datasets, helping reduce 
computational complexity and improve model 
performance by focusing on the most informative features 
[9]. 
Dou et al. (2023) discuss machine learning techniques for 
small data challenges. This is applicable in meteorological 
forecasting where clean, high-resolution weather data may 
be scarce or missing in certain regions or timeframes [10]. 
While more peripheral, Zhao et al. (2024) provide an 
overview of autonomous systems, underscoring how 
temporal prediction (e.g., in autonomous driving) 
intersects with methodologies like LSTM, reinforcing the 
wide applicability of temporal models in real-world 
decision-making systems [11]. 

Hybrid and Ensemble Approaches: 
To further improve accuracy, researchers have explored 
hybrid models that combine LSTM with statistical 
methods or other deep learning layers (e.g., CNN-LSTM 
architectures). These models benefit from both short-term 
precision and long-term pattern recognition. 
This review highlights the transition from classical 
statistical methods to advanced deep learning models in 
the field of weather forecasting. The use of LSTM, in 
particular, offers a robust framework for capturing 
temporal dependencies and handling the non-linear nature 
of meteorological data. Various other Machine Learning 
and Deep Learning algorithms are also implemented on 
different kinds of datasets [12-18]. 

III. METHODOLOGY AND EXPERIMENTATION 
The methodology for this study involves several key steps, 
from data preprocessing to model training and evaluation, 
focusing on the use of Long Short-Term Memory (LSTM) 
networks for accurate weather forecasting.  
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1. Data Collection and Preprocessing 
Historical meteorological data was obtained, containing 
variables such as temperature, humidity, pressure, wind 
speed, and vapor-related measurements. The dataset 
covered multiple years and was recorded at regular time 
intervals. Preprocessing steps included: 
Handling Missing Values: Linear interpolation and 
forward-filling techniques were applied. 
Normalization: Features were normalized using Min-Max 
scaling to improve model convergence. 
Feature Selection: Relevant features were chosen based on 
correlation with the target variable. 
Windowing: The data was segmented into input sequences 
(e.g., past 120-time steps) and corresponding targets for 
training. 

2. Model Architecture: LSTM 
An LSTM neural network was chosen for its ability to 
model sequential data with long-term dependencies. The 
model architecture includes: 
Input Layer: Accepts time-windowed sequences. 
LSTM Layer(s): One or more LSTM layers with memory 
cells to capture temporal dependencies. 
Dense Output Layer: Fully connected layer that outputs 
the predicted value. 

3. Training Configuration 
Optimizer: Adam optimizer with a learning rate of 0.001. 
Loss Function: Mean Squared Error (MSE) was used to 
measure prediction accuracy. 
Batch Size and Epochs: Training was performed over 10 
epochs with a suitable batch size (e.g., 32). 
Validation Split: A portion of the dataset was reserved for 
validation to monitor overfitting. 

4. Model Evaluation 
Metrics: Training and validation losses were recorded per 
epoch. 
Visualization: Loss curves were plotted to assess 
convergence. Additionally, single-step prediction plots 
were generated to visually compare actual and predicted 
values. 
Prediction Strategy: A single-step forecasting approach 
was used, where the model predicts one future value based 
on a fixed-length history window. 
Climate dataset with 11 features such as temperature, 
pressure, humidity etc., are recorded once per 10 minutes. 
The following are the attributes of the dataset. 
 

Table 1: Attributes of the dataset 
Feature Description 
T Temperature 
P Pressure used to quantify internal 

pressure 
Rh Relative Humidity 
Sh Specific Humidity 
Wv Wind Speed 
Wd Wind Direction in degrees 
max wv Maximum wind speed 
Vpact Vapor Pressure 
VPmax Saturation Vapor Pressure 

Rho Airtight 
H20C Water Vapor Concentration 

 
Climate data is extracted by get_file() method available in 
Keras.utils. Anomalies can be addressed during 
normalization. Distinct pattern of each feature over the 
time period has been plotted as represented in figure 1.  

Figure 1 presents a comprehensive visualization of key 
meteorological parameters recorded over time, from 
January 2009 to August 2016. Each subplot corresponds to 
a different atmospheric variable, including pressure, 
temperature (in °C and Kelvin), dew point, relative 
humidity, vapor pressure, wind speed and direction, air 
density, and various humidity metrics. The plots reveal 
clear seasonal and daily patterns in many of the variables, 
particularly in temperature, relative humidity, vapor 
pressure, and specific humidity, indicating strong cyclic 
behaviour in the data. 

Notable periodic fluctuations are visible in the temperature 
and humidity-related variables, aligning with expected 
seasonal changes. Some variables such as maximum wind 
speed and wind speed (wv) exhibit extreme negative 
values, possibly indicating anomalies or sensor errors. 
These would require preprocessing or imputation before 
training forecasting models. The plots provide valuable 
insights into the temporal structure, variance, and 
seasonality of the data, and form the foundation for 
building accurate time series forecasting models. 

 

Figure 1: Distinct pattern of each feature over the time 
period 

We are utilizing approximately 500,000 data points for 
training, with observations collected every 10 minutes—
equivalent to six observations per hour. To reduce 
redundancy and computational load, the data has been 
resampled to one observation per hour, as minimal 
variation is expected within a 60-minute window. This 
resampling is achieved using the sampling_rate parameter 
in the timeseries_dataset_from_array utility. 
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To predict the temperature 12 hours into the future 
(corresponding to 72 timestamps at the original sampling 
rate), we consider the past 120 hours of data, which 
equates to 720 timestamps. As the dataset includes 
features with varying value ranges, normalization is 
performed by subtracting the mean and dividing by the 
standard deviation of each feature, effectively scaling the 
data to a [0, 1] range—an essential step for training a 
neural network. 

We allocate 70% of the dataset for training by specifying 
the split_fraction parameter. For each training instance, the 
model receives data from the past five days (720 hourly-
sampled observations) and is tasked with predicting the 
temperature 12 hours later. 

A correlation heatmap analysis revealed that some 
features, such as Relative Humidity and Specific 
Humidity, show redundancy. Consequently, feature 
selection was applied, and the following parameters were 
retained: Pressure, Temperature, Saturation Vapor 
Pressure, Vapor Pressure Deficit, Specific Humidity, 
Airtightness, and Wind Speed. 

The timeseries_dataset_from_array function processes 
evenly spaced data points and, based on specified time 
series parameters like sequence length and step size, 
generates batches of sub-sequences and corresponding 
targets to be used for model training and validation. 

Train the model using Adam optimizer with 0.001 learning 
rate and calculate the loss using Mean Squared Error. Use 
keras LSTM for taking the inputs. Table 2 represents the 
output of each layer and the number of parameters. 

Table 2: Training Model 
Type of Layer Output Shape Number of Parameters 
Input Layer (None, 120, 7) 0 
LSTM (None, 32)    5,120 
Dense (None, 1) 33 

The loss value for each epoch is represented in Table 3. 
Table 3 displays the training and validation loss values 
over 10 epochs during the model training process. The loss 
was calculated using the Mean Squared Error (MSE) 
function. As observed, both training and validation losses 
consistently decrease over the epochs, indicating that the 
model is learning to minimize prediction errors. Initially, 
the training loss drops significantly from 0.4717 to 0.1398 
between epochs 1 and 2, and continues to improve 
gradually thereafter. Meanwhile, the validation loss shows 
a downward trend with minor fluctuations, decreasing 
from 0.1648 to 0.1244 by epoch 10. The gap between 
training and validation loss remains relatively small, 
suggesting that the model is not overfitting and generalizes 
well on unseen data. Overall, the consistent improvement 
across both metrics confirms the effectiveness of the 
training process and the model’s potential for accurate 
forecasting. 

Table 3: Training Loss and Validation Loss for each Epoch 
Epoch Training Loss Validation Loss 
1 0.4717 0.1648 
2 0.1398 0.1381 
3 0.1253 0.1423 
4 0.1191 0.1465 
5 0.1168 0.1442 
6 0.1158 0.1399 
7 0.1146 0.1338 
8 0.1158 0.1294 
9 0.1085 0.1260 
10 0.1074 0.1244 

Training Loss and Validation Loss is represented in Figure 
2. Figure 2 shows the progression of training and 
validation loss across 10 epochs during model training. 
The loss is measured using Mean Squared Error (MSE). 
The blue line represents the training loss, which decreases 
steadily from around 0.22 to 0.10, indicating effective 
learning and convergence of the model. The red line 
represents the validation loss, which initially drops from 
around 0.165 to 0.138, followed by minor fluctuations 
between epochs 2 and 5, before continuing to decline 
gradually to about 0.124. 

The gap between the training and validation loss remains 
small, suggesting that the model generalizes well and is 
not overfitting. The slight increase in validation loss 
during the middle epochs is common and may reflect 
temporary over-adjustments during training. Overall, the 
figure demonstrates a healthy training process with 
consistent performance improvement on both training and 
unseen validation data. 

 

Figure 2: Training Loss and Validation Loss for each 
Epoch 

Trained model making predictions from validation set as 
represented in Figures 3 and 4.  
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Figure 3: Model Prediction using Validation set1 

Figure 3 illustrates a single-step time series prediction 
using the trained model. The blue line represents the 
historical input data (past observations), while the red 
cross denotes the true future value at the next time step. 
The green dot indicates the model’s predicted value for 
that same time step. As observed, the model prediction 
closely aligns with the true future value, demonstrating the 
model's ability to accurately capture short-term temporal 
patterns. This visualization confirms the effectiveness of 
the model for single-step forecasting tasks, providing a 
strong baseline for evaluating future predictions and model 
performance. 

 

Figure 4: Model Prediction using Validation set2 

Figure 4 presents another instance of single-step time 
series prediction. The blue line shows the historical data 
used as input, the red cross marks the true future value, 

and the green dot represents the model's prediction at that 
step. In this example, the model prediction does not align 
closely with the true value, highlighting a prediction error. 
This discrepancy may be attributed to sudden changes in 
the data trend or underfitting in certain regions of the input 
sequence. Such deviations are important for evaluating the 
robustness of the model and can help identify scenarios 
where the model may need further tuning or where more 
complex temporal patterns require attention. This figure 
illustrates that while the model performs well overall, 
occasional mismatches can occur especially when the data 
exhibits irregular or rapid fluctuations. 

IV. CONCLUSION 
This study demonstrated the effectiveness of time series 
forecasting techniques in predicting key meteorological 
parameters such as temperature, humidity, pressure, and 
wind speed. By leveraging historical weather data, the 
implemented models were able to learn temporal patterns 
and provide accurate short-term predictions. The training 
process, evaluated using Mean Squared Error (MSE), 
showed a consistent decrease in both training and 
validation losses, indicating successful model convergence 
and generalization. Among the methods explored, deep 
learning-based approaches exhibited superior performance 
over traditional statistical models, especially in capturing 
non-linear relationships and seasonal trends in the data. 
Visualizations such as single-step prediction plots 
provided intuitive insights into the model's forecasting 
capabilities, highlighting both strengths and occasional 
limitations. 
Overall, the results affirm that time series modelling can 
play a vital role in enhancing weather forecasting 
accuracy. Future work may involve multi-step forecasting, 
hybrid model approaches, and incorporating external 
features like topography or satellite data to further 
improve predictive performance.  
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