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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
The purpose of the research is to explore and develop Deep Reinforcement Learning and Q-Learning algorithms in 
order to improve Ethereum cybersecurity in contract vulnerabilities, the smart contract market and research 
leadership in the area. Deep Reinforcement Learning (Deep RL) is gaining popularity among AI researchers due to 
its ability to handle complex, dynamic, and particularly high-dimensional cyber protection problems. The 
benchmark of RL is goal-oriented behavior that increases rewards and decreases penalties or losses, and enhances 
real-time interaction between an agent and its surroundings. The research paper examines the three major 
cryptocurrencies (Bitcoin, Litecoin and Ethereum) and the role played by cyber-attacks.The Design Science 
Research Paradigm as applied in Information Systems research was used in this research, as it is hinged on the idea 
that information and understanding of a design problem and its solution are attained in the crafting of an 
artefact. The proposed constructs were in the form of Deep Reinforcement Learning and Q-Learning algorithms 
designed to improve Ethereum cybersecurity. Smart contracts on the Ethereum blockchain can automatically 
enforce contracts made between two unknown parties. Blockchain (BC) and artificial intelligence (AI) are used 
together to strengthen one another's skills and complement one another. Consensus algorithms (CAs) of BC and 
deep reinforcement learning (DRL) in ETS were thoroughly reviewed.  In order to integrate many DCRs and 
provide grid services, this article suggests an effective incentive-based autonomous DCR control and management 
framework. This framework simultaneously adjusts the grid's active power with accuracy, optimizes DCR 
allocations, and increases profits for all prosumers and system operators. The best incentives in a continuous action 
space to persuade prosumers to reduce their energy consumption were found using a model-free deep deterministic 
policy gradient-based strategy. Extensive experimental experiments were carried out utilizing real-world data to 
show the framework's efficacy. 
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I. INTRODUCTION 
1.1  Background 
A new era of artificial intelligence is currently being 
ushered in by recent advances in Machine Learning (ML) 
and neuroscience, as well as an increase in data volume and 
a new generation of computers (AI). At the moment, deep 
reinforcement learning, which encompasses a number of 
potent techniques, is gaining popularity among AI 
researchers (RL). Deep RL techniques have been 
effectively used in a variety of applications, from natural 
language processing to picture understanding. For instance, 

deep RL has been frequently suggested to combat 
cyberattacks against systems linked to the Internet. Cyber 
threats are complex and dynamic, therefore defenses must 
be quick to react, be flexible, and be powerfully efficient. 
Deep RL has demonstrated a strong ability to handle 
complicated, dynamic, and particularly high-dimensional 
cyber protection problems. Deep RL systems also 
outperformed humans at several Atari video games and the 
game Go. The fact that biological and artificial organisms 
both need to accomplish goals in order to survive and be 
useful is a factor in the success of deep RL. The benchmark 
of RL is this behavior that is goal-oriented. Such behavior 
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is founded on developing behaviors that increase rewards 
and decrease penalties or losses. Real-time interaction 
between an agent and its surroundings is essential to RL. 
The agent must decide on its course of action based on a 
collection of inputs, where the inputs specify the 
environmental states. Over time, the agent aims to 
maximize these outcomes, which might be either rewards 
or penalties. In biological systems, this formulation is 
normal, but it has also shown to be quite effective for 
artificial agents. In actuality, deep RL is intrinsically 
interesting for a wide range of applications due to the mix 
of representation learning and goal-oriented behavior. 
The use of cryptocurrencies will become more widespread 
as computer technology advances, and more newcomers 
will enter the market. Due to the need for a second reliable 
party, organized businesses adapt their business models. 
Smart contracts on the blockchain can automatically 
enforce contracts made between two unknown parties [1]. 
The second-largest blockchain platform, Ethereum, 
supported high-level programming languages for the first 
time and offers a runtime environment for virtually all 
Decentralized Financial applications [1]. Bitcoin also 
permits the development and execution of smart contracts, 
although it is affected by the nature of the programming 
language employed, and scarcely supports transactions 
except for confirming signatures. Certain security flaws can 
be quite expensive because smart contracts can allow a 
range of huge transactions. The topic of smart contracts for 
the Ethereum blockchain was extensively researched and 
surveyed by [1]. The study paper first analyzes some of the 
current or former contract vulnerabilities and their fixes, 
looks at the direction the smart contract market is headed 
in, and offers some recommendations for individuals 
conducting research in the area. 
In energy trading systems, blockchain (BC) and artificial 
intelligence (AI) are frequently used individually (ETSs). 
When combined, these technologies can strengthen one 
another's skills and complement one another. Consensus 
algorithms (CAs) of BC and deep reinforcement learning 
(DRL) in ETS were thoroughly reviewed in [2]. While the 
immutability of prosumer transaction records is supported 
by distributed consensus, the flood of data generated opens 
the door for using AI algorithms for forecasting and 
addressing other data analytic-related challenges. Thus, the 
desire to create a secure and intelligent ETS by combining 
BC and AI. The study by [2] investigated the fundamental 
ideas, opportunities, models, ongoing research projects, and 
unresolved issues in the CA and DRL. Despite the current 
interest in each of these technologies, the review revealed 
that because of various unresolved challenges, little has 
been done to jointly leverage them in ETS. To fully utilize 
CA and DRL in ETS, fresh insights are therefore urgently 
needed. 
Millions of grid-connected distributed controllable 
resources (DCR; for example, electric automobiles, 
controllable loads) are now able to deliver grid services like 
frequency management and demand response because of 
the quick development of the Internet of Things in smart 
grids[3]. These DCRs might combine to form a sizable 
virtual power plant network with a variety of features. This 

presents significant control and management difficulties, 
such as the cost of computing and communication, the 
complexity of optimization, the scalability constraint, the 
privacy of prosumers, etc. [3] proposed an efficient 
incentive-based autonomous DCR control and management 
framework to integrate a large number of DCRs to provide 
grid services, which simultaneously provides accurate 
active power adjustment to the grid. In addition, it optimizes 
DCR allocations, and maximizes the profits for all 
prosumers and system operators. The best incentives in a 
continuous action space to persuade prosumers to reduce 
their energy consumption were found by [3] using a model-
free deep deterministic policy gradient-based strategy. The 
technique was included into the Hyperledger Fabric open-
source blockchain technology, which enables controls and 
transaction management. Extensive experimental 
experiments were carried out utilizing real-world data by 
[3] to show the framework's efficacy. 
 
1.2 Main Purpose 
The purpose of the research is to explore and develop Deep 
Reinforcement Learning and Q-Learning algorithms in 
order to improve Ethereum cybersecurity in contract 
vulnerabilities, the smart contract market and research 
leadership in the area. 
 
1.3 Research Objectives 
The key research objectives of the research are to: 
a) Ascertain how Deep Reinforcement Learning (Deep 

RL) can be used to handle complex, dynamic, and 
particularly high-dimensional cyber protection 
problems.  

b) Investigate how Reinforcement Learning (RL) as a 
goal-oriented behavior that increases rewards and 
decreases penalties or losses, and real-time interaction 
between an agent and its surroundings, can be used to 
test a portfolio of cryptocurrencies. 

c) Develop smart contracts on the Ethereum blockchain 
to automatically enforce contracts made between two 
unknown parties and improve Ethereum 
cybersecurity. 

 

1.4 Research Questions 
The research questions include the following: 
a) How can complicated, dynamic, and especially high-

dimensional cyber defense problems be handled using 
Deep Reinforcement Learning (Deep RL)? 

b) How can a cryptocurrency portfolio be tested using 
Reinforcement Learning (RL) effectively? 

c) How may smart contracts be developed for the 
Ethereum blockchain and used to enforce agreements 
that may enhance the security of Ethereum? 

 
 

II. LITERATURE REVIEW 
2.1 Deep Reinforcement Learning (DRL) 
Deep reinforcement learning DRL is a rapidly growing field 
in machine learning that combines deep neural networks 
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with reinforcement learning techniques to enable machines 
to learn from their environment and make decisions. Deep 
reinforcement learning (DRL) can be defined as a subfield 
of machine learning that involves the use of deep neural 
networks to solve reinforcement learning (RL) problems 
[4]. RL is a type of learning where an agent learns to make 
decisions by receiving feedback in the form of rewards or 
punishments. DRL is a promising approach to solving 
complex tasks that are difficult to program explicitly. In this 
literature review, we will examine the current state of 
research in the field of DRL, including the basic concepts, 
applications, challenges, and future directions. 
2.1.1 Basic Concepts 
DRL is a type of machine learning that uses neural networks 
with many layers to learn from data [5]. These networks are 
capable of learning complex representations of data, which 
can be used to make predictions or decisions. The 
foundation of DRL is built upon the principles of 
reinforcement learning, which involves an agent learning 
from its environment through trial and error to maximize its 
cumulative reward. DRL extends this approach by 
incorporating deep neural networks as function 
approximators to learn high-dimensional state-action value 
functions [6]. Deep neural networks consist of multiple 
layers of interconnected nodes, or neurons that transform 
input data into output data. Each layer learns a different 
representation of the input data, and the output of one layer 
serves as the input to the next layer. The final layer produces 
the output of the network. Deep reinforcement learning 
combines reinforcement learning with deep neural 
networks to learn policies for complex tasks. The use of 
deep neural networks allows the agent to learn complex 
representations of the state and action spaces, which can 
improve the quality of the learned policy [7]. The basic 
approach to deep reinforcement learning involves using a 
neural network to represent the policy, and training the 
network using a variant of the reinforcement-learning 
algorithm called the Q-learning algorithm [8]. The Q-
learning algorithm uses a value function, called the Q-
function, to estimate the expected cumulative reward for 
each state-action pair. The Q-function is learned using the 
Bellman equation.  
 
2.1.2 Applications 
In recent years, DRL has seen tremendous growth in terms 
of its applications across a wide range of domains, 
including robotics, gaming, healthcare, finance, 
autonomous driving, and natural language processing.  
DRL has been used to train robots to perform complex tasks 
such as grasping, object manipulation, and locomotion [4]. 
For instance, [8] used DRL to train a robot to grasp objects 
in cluttered environments, achieving success rates of over 
90%. Similarly, [9] used DRL to train a simulated 
humanoid robot to walk and run, achieving results 
comparable to those of human experts. In addition, DRL has 
been used to train agents that can play complex games such 
as Go, chess, and poker at superhuman levels. In healthcare, 
DRL has been used to develop personalized treatment plans 
for patients with chronic diseases such as diabetes and 
hypertension. For example, [11] developed a DRL-based 

system that can automatically adjust insulin dosages for 
patients with diabetes, leading to improved glucose control 
compared to standard treatments. In finance, DRL has been 
used to develop trading algorithms that can learn to make 
profitable trades in complex and dynamic markets. For 
instance, [10] developed a DRL-based trading agent that 
learned to trade stocks and achieved higher returns than 
traditional trading strategies. DRL has also been applied to 
autonomous driving, where it has shown the potential to 
improve safety and reduce congestion [11]. Another 
important development in DRL is the use of meta-learning 
to improve the learning process. Meta-learning is the 
process of learning how to learn, and it has been applied to 
DRL to improve sample efficiency and generalization ([12]. 
One of the most successful meta-learning algorithms in 
DRL is Model-Agnostic Meta-Learning (MAML) 
introduced by [12]. MAML learns a good initialization of 
the network parameters that can be fine-tuned to adapt to 
new tasks quickly. With continued research and 
development, DRL is likely to find even more applications 
in the future. 
 
2.1.3 Challenges 
Despite its success in various applications, DRL faces 
several challenges that must be addressed to fully realize its 
potential. One of the primary challenges is the high 
computational cost required for training deep neural 
networks [14]. Training a DRL agent often requires large 
amounts of data and computation resources, which can 
make it impractical for some applications. This challenge is 
further compounded by the fact that DRL requires extensive 
trial and error, which can be time-consuming and resource-
intensive. Another challenge is the need for more robust and 
reliable algorithms that can handle the non-stationarity of 
the environment and ensure stability during training [15]. In 
addition, the instability of the learning process is a problem 
in DRL. Due to the complex interactions between the deep 
neural network and the RL environment, the learning 
process can be sensitive to the choice of hyper parameters 
and the initialization of the network weights. To address 
this issue, researchers have proposed several techniques 
such as batch normalization, target networks, and 
prioritized experience replay. There is need for better 
exploration strategies. DRL agents often get stuck in local 
optima, where they fail to explore the entire state-action 
space, leading to suboptimal policies [11]. Several 
exploration strategies, such as epsilon-greedy exploration 
and adding noise to the action selection process have been 
proposed. Another challenge is the difficulty of transferring 
learned policies to new tasks or environments [16]. DRL 
agents are often trained on specific tasks or environments, 
and they may fail to generalize to new tasks or 
environments. Several transfer learning methods, such as 
fine-tuning and meta-learning are meant to solve this. DRL 
also faces challenges in terms of interpretability and 
safety [17]. Deep neural networks are often referred to as 
black boxes, which makes it difficult to understand how 
they make decisions. This lack of interpretability can be a 
significant challenge in applications such as healthcare and 
finance, where decisions made by DRL agents can have 
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significant consequences. Ensuring the safety of DRL 
agents is another critical challenge, as they can learn to 
perform actions that may be unsafe or even dangerous in 
certain situations [18]. To address this issue, researchers 
have proposed several safety mechanisms, such as reward 
shaping and constraints on the actions taken by the agent. 
Overally, to address the challenges facing DRL, several 
promising directions for future research have been 
proposed. One direction is to develop more efficient 
algorithms that can reduce the computational cost of 
training deep neural networks. Another direction is to 
explore the use of transfer learning, where knowledge 
learned from one task can be transferred to another task to 
reduce the amount of training required. Finally, the 
development of more robust and reliable algorithms that 
can handle the non-stationarity of the environment and 
ensure stability during training is an important area for 
future research.  
 
2.1.4 Future Directions  
Despite the challenges, DRL is still a promising approach 
to solving complex RL problems using deep neural 
networks. It has shown remarkable success in a variety of 
domains, and there is still a lot of ongoing research to 
improve the performance and stability of DRL algorithms. 
DRL is expected to continue to grow and make significant 
contributions to the field of machine learning in the coming 
years. One of the key directions for future research is to 
improve the sample efficiency of DRL algorithms [19]. 
Sample efficiency refers to the ability of an algorithm to 
learn from limited amounts of data. Another important 
direction for future research is to improve the 
interpretability and safety of DRL agents [20]. Researchers 
are exploring several approaches to address these issues, 
such as developing more transparent neural network 
architectures, incorporating human-in-the-loop approaches, 
and developing techniques for verifying the safety of DRL 
agents. Finally, researchers are also exploring new 
applications of DRL in areas such as natural language 
processing, computer vision, and robotics.  
 
2.2. Q-learning Algorithms  
Q-Learning is a popular Reinforcement Learning (RL) 
algorithm that has been widely used in various applications, 
including robotics, game playing, and control systems. This 
literature review provides an overview of the Q-Learning 
algorithm and its variants, including their applications, 
strengths, and weaknesses. Q-Learning is a widely used 
reinforcement learning algorithm that enables an agent to 
learn an optimal policy by exploring its environment and 
receiving rewards for its actions. Q-Learning can handle 
environments with stochastic transitions and delayed 
rewards, making it a powerful algorithm for solving a wide 
range of reinforcement learning problems. Q-learning is a 
reinforcement learning algorithm that aims to find the 
optimal policy for a given Markov Decision Process 
(MDP). It is one of the most widely used algorithms in 
reinforcement learning, owing to its simplicity and 
effectiveness. Q-learning is a model-free algorithm, which 
means it does not require any prior knowledge of the MDP 

transition probabilities. In this paper, we will discuss the 
basic concepts of Q-learning, including its update rule, 
exploration-exploitation tradeoff, and convergence 
properties. The Q-learning algorithm is based on the 
Bellman equation, which expresses the optimal value 
function V*(s) in terms of the optimal action-value function 
Q*(s,a). The optimal action-value function Q*(s,a) is the 
expected sum of rewards obtained by taking action a in state 
s and then following the optimal policy thereafter. The 
Bellman equation is given by: 

Q*(s,a) = E[r + γ * max_a' Q*(s',a') | s,a] 
where r is the immediate reward obtained by taking action 
a in state s, s' is the next state, and γ is the discount factor 
that determines the importance of future rewards. 
The Q-learning algorithm uses an iterative update rule to 
estimate the optimal action-value function Q*(s,a). At each 
time step t, the agent observes the current state s_t and takes 
an action a_t based on its current estimate of the action-
value function Q. After taking the action, the agent observes 
the immediate reward r_t and the next state s_{t+1}. The 
update rule for Q is given by: 
Q(s_t,a_t) = Q(s_t,a_t) + α[r_t + γ max_a' Q(s_{t+1},a') - 

Q(s_t,a_t)] 
where α is the learning rate that determines the rate at which 
the agent updates its estimates. 
 
2.3. Ethereum Cybersecurity 
A blockchain is essentially a digital ledger of transactions 
(DLT) that, upon duplication, is spread on the blockchain 
throughout the whole computer network. A blockchain is a 
data structure that keeps transactional information in the 
form of block chains and stored in many databases. The 
blockchain technology is a decentralized, rigid ledger that 
provides systems for recording transactions, managing 
resources, and storing records in a network where each node 
is linked to every other node and is referred to as a block 
[26]. Because the ledger is intended to enable transaction 
settlement and such settlement corresponds to all copies of 
the ledger documenting the transaction, the ledger's 
functionality depends on validators agreeing on its contents. 
Consensus among validators, also known as agreement, is 
therefore crucial for the sustainability of blockchain. 
Cryptography allows for the transmission and storage of 
data in a form that is only readable and usable by authorized 
parties. The process of turning well-known plain text into 
invisible content and vice versa is known as cryptography 
[26]. A digital payment system known as cryptocurrency 
was created utilizing Blockchain technology, allowing 
anyone to transfer and receive money digitally rather than 
physically [26]. Decentralized digital applications that 
enable users to engage in direct agreements and transactions 
to buy, sell, and trade products without the need for a 
middleman are run on an Ethereum Blockchain, which 
offers end-to-end security. The three most popular 
cryptocurrencies—Bitcoin, Litecoin, and Ethereum—as 
well as the part cyberattacks play are examined in the 
research report. 
Ethereum is a platform that can be used to create 
organizations and apps, store assets, carry out transactions, 
and enable communications without the need for 
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centralized oversight [27]. As the second-largest blockchain 
platform and the first to enable high-level programming 
languages for the implementation of smart contracts, 
Ethereum offers a runtime environment for virtually all 
decentralized financial applications. In addition 
to supporting the creation and execution of smart 
contracts, Bitcoin also mostly supports transactions, with 
the exception of verifying signatures [27]. Nevertheless, 
this support is influenced by the programming language 
employed. Certain security flaws can be quite expensive 
because smart contracts can allow a range of huge 
transactions. Smart contracts enable traceable and 
irreversible trusted transactions without the need for a third 
party. One of the most significant advantages of smart 
contracts over conventional contracts is the automatic 
execution of the outcomes upon fulfillment of the contract's 
requirements. Waiting for the results of human execution is 
useless. Alternatively, to put it another way, smart contracts 
do not require confidence. Traditional contracts are 
impacted by a variety of factors, such as automation 
dimensions, subjective and objective dimensions, cost 
dimensions, execution time dimensions, default penalty 
dimensions, scope of application dimensions, etc. The 
smart contract must consider and specify each possible 
event before placing a wager. After the incident, the 
operation will be carried out automatically and strictly in 
accordance with the pre-determined contract content [27]. 
Hence, it is possible to deal with the problems that come up 
with traditional contracts. 
The Ethereum blockchain supports distributed, public, and 
immutable smart contracts. They do, however, have a lot of 
weaknesses that result from developers' coding mistakes. 
Between 2016 and 2018, seven cybersecurity incidents 
involving Ethereum smart contracts occurred, resulting in 
financial losses that are thought to have exceeded US$ 289 
million [28]. Two of these catastrophes were brought on by 
reentrancy vulnerability, and the results extended far 
beyond monetary loss. There are a number of reentrancy 
countermeasures that can be deployed, based on 
predetermined patterns, to stop vulnerability exploitation 
before the deployment of a smart contract; however, these 
countermeasures have a number of drawbacks. By 
providing a solution that determines the discrepancy 
between a smart contract's contract balance and the total of 
all participants' balances both before and after any operation 
in a transaction that changes its state, the research study 
aims to help developers strengthen the security of smart 
contracts. This strategy can offer a detection and defensive 
mechanism against reentrancy assaults during the execution 
of any smart contract, according to proof-of-concept 
implementations [28]. With the launch of Ethereum smart 
contracts in 2015, there have been a number of instances 
where disputes or other problems have arisen as a result of 
the functioning of smart contracts that contained a certain 
quantity of ether [29]. Reentrancy vulnerability was the 
cause for these instances. Despite these events, smart 
contracts are becoming more and more common; yet, this 
also makes them more of a target for attackers. 
Because they are much like any other executable apps that 
run on computers, smart contracts are one of the most often 

exploited attack vectors against Ethereum. However, as 
stated by [28], smart contracts are more vulnerable in terms 
of cybersecurity because the smart contracts work on top of 
an immutable blockchain and are connected to a digital 
fortune that may be worth millions of dollars. 
Consequently, even if the smart contracts have defects, 
once they are distributed on the blockchain it may be 
impossible and extremely difficult to change them (the 
"code is law" notion). 
Since the contracts run on top of immutable technology, 
numerous countermeasures are intended to identify security 
issues during the development stage. Developers of smart 
contracts must take action to fix these issues during the 
execution phase rather than relying just on the development 
phase. The issue is how to protect a smart contract during 
execution despite the fact that it cannot be changed and has 
defects. One of the frequent dangers to the Ethereum 
blockchain, which is connected to the Solidity 
programming language, is reentrancy assaults. Attacks take 
place when a malicious party uses a smart contract's 
external call to trick it into running extra code by using a 
fallback function to call back to the contract [28]. Several 
techniques are used to guard against the reentrancy 
vulnerability in smart contracts. These proactive 
techniques, which are used prior to the implementation of 
the smart contracts, include security based on programming 
languages, security based on the creation of smart contracts, 
and vulnerability-detection tools for Ethereum smart 
contracts [28]. Reentrancy vulnerability can be found using 
a number of smart contract vulnerability detection tools. 
The introduction of several high-level programming 
languages enables the secure development of smart 
contracts. There are a few ways to improve the smart 
contract programming model to help developers reduce or 
eliminate the reentrancy risk. Ethereum smart contract best 
practices is one of them, which was first introduced by 
ConsenSys Diligence. This gives programmers of Solidity 
a foundational understanding of security issues [28]. Also, 
a number of suggestions are given to help Ethereum smart 
contract developers stay clear of code problems. All 
Ethereum smart contract development must follow 
protocol-specific advice to guard against reentrancy risk, 
such as avoiding state changes following external calls. The 
other suggestions are Solidity-specific, and they may be 
instructive for those creating smart contracts in other 
languages [28]. 
 
2.4. Cyber risks for Cryptocurrencies and 
Blockchain Technologies 
In recent years, the use of cryptocurrencies and blockchain 
technology has exploded, with Bitcoin being the most well-
known and popular one. The risk of cyberattacks has 
increased along with the adoption of these technologies, 
though. Over the past ten years, blockchain technology has 
become more prevalent. As a result, blockchain-based 
applications have impacted several industry sectors and 
have amassed substantial international user support. The 
most widely used blockchain applications are now 
cryptocurrencies [32]. 
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Three types of blockchain technology exist: private, public 
or permissionless, and federated or consortium blockchain. 
Whether or not authenticated trusted participants are 
required depends on the number of companies involved in 
maintaining the digital ledger [34]. According to the 
perception of private and consortium blockchains as being 
permissioned, it is necessary for a specific management 
entity to offer access privileges to reliable and vetted 
members. The private blockchains Multichain, Monax, and 
Quorum are a few examples. A consortium blockchain is 
also governed by at least two different companies. The 
operation is entirely decentralized and ad hoc with a public 
blockchain, which allows anybody to access or write the 
data stored in the blockchain network without needing 
permission from any authority. Important examples are 
Bitcoin, Ether, and Monero. A consensus-based approach is 
used by public blockchains to choose which user will 
submit a block. Users with suspicions can cooperate in a 
blockchain network thanks to consensus procedures [34].  
Cyberattacks that target cryptocurrencies and the 
fundamentals of blockchain technology have grown, 
costing consumers and companies millions of euros [32]. 
The following are some of the cyber dangers that 
cryptocurrencies and blockchain technologies are exposed 
to: 

1. Phishing attacks35 
2. Illegitimate trading platforms [35]. 
3. Use of third party applications [35]. 
4. Crypto-malware and mining malware [35]. 
5. Cryptocurrency account security [33].  
6. Unregulated cryptocurrency exchanges [34]. 
7. User confusion [35] 
8. Risk of reentrancy attacks in smart contracts [37].  
9. Hacking [36]. 
10. Fraudulent ICOs [37]. 
11. 51% Attacks [37]. 
12. Software’s errors [34]. 
13. Risks associated with hash function [34]  
14. Digital signature risks [34]. 
 

Mitigation Measures  
Our understanding of money and transactions has changed 
dramatically as a result of the adoption of cryptocurrencies 
and blockchain technology. These technologies do, 
however, also pose important cyber threats that need to be 
handled. The dangers connected with cryptocurrencies and 
blockchain technologies can be reduced by putting in place 
the right security measures and carrying out regular audits, 
allowing these technologies to develop and expand. The 
following are some of the mitigation measures: 
 Multi-Factor Authentication: Cryptocurrency wallets 

can benefit from an additional degree of protection 
provided by multi-factor authentication. This can 
involve the use of one-time passwords as well as 
biometric identification methods like fingerprint or 
face recognition. 

 Cold Storage: Cold storage refers to storing 
cryptocurrency offline, such as on a hardware wallet 
or paper wallet. By doing this, money can be shielded 
from theft in the event of a hack or other cyber-attack. 

 Due Diligence: Before investing in any blockchain 
startup or initial coin offering (ICO), investors should 
do their research. This may entail looking into the 
project's personnel, reading the white paper, and 
examining the token economics. 

 Consensus Mechanisms: By making it difficult for any 
single entity to dominate the network, consensus 
mechanisms like proof-of-work or proof-of-stake can 
aid in preventing 51% attacks. 

 
2.5. Proof-of-Stake Ethereum 
The Proof-of-Stake (PoS) consensus algorithm is an 
alternative to the conventional Proof-of-Work (PoW) 
consensus algorithm employed by cryptocurrencies like 
Bitcoin [40]. Participants in a blockchain network can 
validate transactions and add new blocks to the chain using 
proof-of-stake (PoS). For a very long time, Ethereum, the 
second-largest cryptocurrency by market capitalization, has 
planned to switch from PoW to PoS. [41]. Validators in 
Ethereum PoS must make a minimum 32 ETH deposit in 
order to use the network. When they validate transactions 
and include new blocks to the blockchain, they get 
rewarded. A validator's chances of being chosen to validate 
transactions and receive rewards increase with the amount 
of ETH they stake. A validator, however, runs the danger of 
being fined a portion of their staked ETH if they act 
maliciously or fail to fulfill their duties [42]. Proof-of-stake 
(PoS) relies on validators staking their own cryptocurrency 
as collateral to participate in the network [43]. Thus, in PoS, 
validators are picked at random based on the amount of 
cryptocurrency they hold and are prepared to "stake" or lock 
up as collateral. The amount staked is a measure of the 
validator's commitment to the network, and the more they 
have staked, the more likely it is that they will be selected 
to validate transactions and add new blocks to the chain. Via 
a series of updates known as Ethereum 2.0, one of the 
biggest blockchain networks in the world, Ethereum, is in 
the process of switching from PoW to PoS [44]. This 
change is being made primarily to strengthen network 
security, decrease energy usage, and improve scalability. In 
Ethereum PoS, validators must stake a minimum of 32 ETH 
in order to access the network. This entails that they must 
secure this sum of ETH as collateral, which they run the risk 
of losing if they engage in malicious behavior or are 
negligent in their validator responsibilities. Transactions 
must be verified by validators, who also suggest new blocks 
and cast votes for or against other validators' proposed 
blocks. The more ETH a validator invests, the better their 
chances are of being chosen to carry out these duties. The 
rewards for validating transactions and adding new blocks 
to the chain are paid out in ETH [45]. PoS Ethereum is 
anticipated to increase network efficiency and accessibility 
by lowering transaction costs and speeding up transaction 
processing. The fact that PoS Ethereum uses a lot less 
energy than PoW is another advantage [46]. To participate 
in the PoS Ethereum network, which uses much less energy, 
validators merely need to stake their own ETH and host a 
node. PoS Ethereum also lowers the possibility of network 
centralization [47], which is another advantage. The risk of 
centralization and collusion is diminished in PoS Ethereum 
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because validators are selected at random based on the 
amount of ETH they have pledged. Nevertheless, the move 
to Ethereum PoS is an exciting milestone for the 
cryptocurrency world because it is expected to significantly 
increase the network's scalability and durability.  
 
 

III.  RESEARCH METHODOLOGY: DESIGN 
SCIENCE RESEARCH 
 
The Design Science Research Paradigm as applied in 
Information Systems research was used in this research. 
This paradigm is hinged on the idea that information and 
understanding of a design problem and its solution are 
attained in the crafting of an artefact [48]. In this research 
the main aim was to to explore and develop Deep 
Reinforcement Learning and Q-Learning algorithms in 
order to improve Ethereum cybersecurity in contract 
vulnerabilities, the smart contract market and research 
leadership in the area. This aim resonated well with the 
Design Science approach which seeks to provide an artefact 
in the form of a construct or a model [48]. In this case the 
proposed constructs were in the form of Deep 
Reinforcement Learning and Q-Learning algorithms 
designed to improve Ethereum cybersecurity. In this 
research the seven guidelines that the Design Science 
employs were followed throughout the study as detailed 
below according to [48]. 
 
Guideline 1: Design as an artefact  
The product or output of Design-science research is a 
viable artefact that can take the form of a method, 
construct or model that will address an identified 
challenge in an organization [48]. In this study, the 
artefact was in the form of Deep Reinforcement Learning 
and Q-Learning algorithms meant to improve Ethereum 
cybersecurity in contract vulnerabilities, the smart contract 
market and research leadership in the area. 
Guideline 2: Problem relevance  
[48], indicate that the aim of design-science research is to 
come up with technology-based solutions that speak to 
identified business challenges. In this research, it was noted 
that smart contracts generated from the Ethereum platform 
were vulnerable to cyber-attacks. As such, there was need 
to come up with Deep Reinforcement Learning (Deep RL) 
algorithms capable of handling complex, dynamic, and 
particularly high-dimensional cyber protection problems.  
Guideline 3: Design evaluation  
According to [48], the design artefact’s quality and 
effectiveness must be thoroughly proven by means of well-
performed evaluation methods. In order to stick to this 
guideline, the researchers presented the Deep 
Reinforcement Learning and Q-Learning algorithms to 
subject matter experts and reviewers. Their feedback was 
then used for the purposes of fine tuning the algorithms for 
the security of the Ethereum. 
Guideline 4: Research contributions  

[48] recommend that real design-science research has to 
deliver clear and provable contributions in the areas of the 
design artefact, design foundations, or design 
methodologies. In this study, the researchers envisaged 
making a contribution through the development of the Deep 
Reinforcement Learning and Q-Learning algorithms 
tailored to improve Ethereum cybersecurity in smart 
contracts. 
Guideline 5: Research rigor 
Design-science research heavily depends on the use of 
rigorous methods in the building and appraisal of the design 
artefact [48]. In this study, research rigor was accomplished 
through comprehensive literature review and testing of the 
Deep Reinforcement Learning and Q-Learning algorithms 
under different situations. In addition to that, continuous 
review by subject matter experts in the domain of 
cybersecurity helped to attain the rigor that is expected 
when applying Design Science research. 
Guideline 6: Design as a search process 
 Design is basically a search process that is meant to find 
out the best solution to an identified challenge using the 
available means whilst sticking to the applicable laws [48]. 
In this research the researchers stuck to research ethics in 
conducting the research.  
Guideline 7: Dissemination of research 
[48] recommends that Design-science research must be 
presented to technologists as well as management in order 
for them to reap the benefits. In order to fulfil this, the Deep 
Reinforcement Learning and Q-Learning algorithms, their 
usefulness and originality was presented to researchers and 
other appropriate audiences such as cybersecurity 
professionals. In addition, the study was also published in 
peer reviewed journals in order to reach the academia and 
research space. 
Similar to JavaScript, Solidity is a language that lets you 
create contracts and compile them into EVM bytecode. 
Nowadays, it is Ethereum's most widely used and flagship 
language. The Proof of Stake consensus illustrated by 
Solidity Ethereum contract programming was used in this 
research study. In theory, consensus on a blockchain can be 
reached by designating a central authority to decide which 
transactions have completed settlement. A blockchain with 
such limitations is described by a protocol. A 
permissionless blockchain lacks a central authority, making 
it more difficult for such a blockchain to reach consensus. 
[39] asserts that the Proof-of-Work economic protocol will 
address the consensus problem in a permissionless 
blockchain (PoW). To update the blockchain, validators 
must compete in a PoW system. Proof-of-Stake (PoS) 
makes an effort to address the energy consumption issue 
brought on by PoW. As a result, PoS eliminates PoW's 
rivalry by choosing stakeholders at random to add to the 
blockchain. 
There are many other types of consensus that can be 
considered but PoS was preferred for this study: 
 (PoW) Proof of Work (Bitcoin, Ethereum, …) 
 (PoS) Proof of Stake (Ethereum in future) 
 (PoI) Proof of Importance (used in NEM) 
 (PBFT) Practical Byzantine Fault Tolerance 

(Hyperledger Fabric) 
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 (FBFT) Federated Byzantine Fault Tolerance 
(Ripple, Stellar) 

 (DPoS) Delegated Proof of Stake 
 (PoET) Proof of Elapsed Time (Hyperledger 

Sawtooth) 
 

The Improved Delegated Proof of Stake (DPoS) 
Algorithm is illustrated below on Fig 1. We improve the 
conventional DPoS consensus algorithm and propose a 
reputation-based delegated proof of stake consensus 
algorithm, called Reputation-DPoS, in an effort to address 
the issues with the current DPoS (Delegated Proof of Stake) 
consensus algorithm, such as low voter enthusiasm and 
challenges dealing with malicious nodes. 

 
Figure 1: The Improved Delegated Proof of Stake (DPoS) 

Algorithm (Source: [49]) 
 
The algorithm for selection of honor delegate node is 
coded as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. DATA ANALYSIS AND KEY FINDINGS 
 
Deep Reinforcement Learning (DRL) is a rapidly growing 
field of machine learning that combines deep neural 
networks with reinforcement learning techniques to enable 
machines to learn from their environment and make 
decisions. It involves using a neural network to represent 
the policy, and training the network using a variant of the 
reinforcement learning algorithm called the Q-learning 
algorithm. DRL has seen tremendous growth in recent years 
in terms of its applications across a wide range of domains, 
including robotics, gaming, healthcare, finance, 

autonomous driving, and natural language processing. 
Meta-learning is the process of learning how to learn, and 
has been applied to DRL to improve sample efficiency and 
generalization. However, it faces several challenges, such 
as the high computational cost required for training deep 
neural networks, the instability of the learning process, the 
need for better exploration strategies, the difficulty of 
transferring learned policies to new tasks or environments, 
and the lack of interpretability and safety. Reinforcement 
Learning (RL) is a promising approach to solving complex 
RL problems using deep neural networks, but there is still a 
lot of ongoing research to improve the performance and 
stability of DRL algorithms. To address this, researchers 
have proposed techniques such as batch normalization, 
target networks, and prioritized experience replay. 
Additionally, researchers are exploring new applications of 
DRL in areas such as natural language processing, 
computer vision, and robotics. Q-Learning is a popular 
reinforcement learning algorithm that enables an agent to 
learn an optimal policy by exploring its environment and 
receiving rewards for its actions. Q-Learning is a 
reinforcement learning algorithm that uses an epsilon-
greedy exploration strategy to balance exploration and 
exploitation. It has several variants, including Deep Q-
Network (DQN), Double Q-Learning, and Dueling Q-
Networks. Blockchain technology is a decentralized, rigid 
ledger that provides systems for recording transactions, 
managing resources, and storing records. Cryptocurrency is 
a digital payment system that allows anyone to transfer and 
receive money digitally rather than physically. Ethereum is 
a platform for decentralized digital applications that enable 
users to engage in direct agreements and transactions 

without the need for a middleman. Cryptocurrencies such 
as Bitcoin, Litecoin, and Ethereum offer end-to-end 
security. 
The research study discussed the limitations of existing 
techniques for identifying reentrancy vulnerabilities in 
smart contracts, such as relying on entire patterns and the 
unique characteristics of these patterns. It proposes a 
remedy to get around these restrictions by offering a 
prevention technique to safeguard the smart contract and a 
detection technique to catch the attacker. It also suggests 
that two values keep the funds in the smart contract in any 
smart contract that administers a fund for numerous 
participants: the protocol layer upholds the first value, 
which is the contract balance displayed as an address in 
Solidity as address(this).balance, while the application 
layer keeps track of the second value.  

Input: Voting results among N nodes, nonce 
Output: honor delegates 
Transmit (nonce, N) Ni : Hash (hash (BlockHead), nonce) 

while (Hash (hash (BlockHead), nonce) > delegates) 
Calculate the vote of each delegate and sort them 

if number of vote of first delegate ≥ second delegate 
Select the first delegate as the honor delegate 

If the votes of different delegates are same 
Calculate the vote deviation percentage 
Select small deviation percentage delegate as honor node 

end if 
end if 
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Cyberattacks that target cryptocurrencies and blockchain 
technology have grown, costing consumers and companies 
millions of euros. Crypto-malware and mining malware are 
two forms of dangerous software that can be used to harvest 
bitcoins from servers or computers belonging to other 
people. Crypto investors rely on third-party applications to 
manage their digital assets, but this increases their exposure 
to cybersecurity concerns. Cryptocurrencies are riskier than 
traditional ones because investors are solely responsible for 
safeguarding their private keys and making sure they are not 
exposed to hackers. Blockchain technology has tamper-
evident and tamper-proof digital ledgers without any central 
authority, allowing users to use a shared ledger to keep 
transactions inside a community. However, there is no 
single agency, institution, or governing authority 
responsible and accountable for the manufacture, 
movement, or management of traditional currencies, 
leading to a fraudulent and hacker-friendly environment. 
Fraudulent ICOs are a well-liked strategy used by 
blockchain businesses to acquire capital, but there have 
been many instances of fraudulent ICOs. Smart contracts 

are more sensitive when it comes to cybersecurity because 
they operate on top of an unchallengeable blockchain, 
making it difficult or impossible to change them. Mitigation 
measures include multi-factor authentication, cold storage, 
due diligence, and consensus mechanisms. 
A blockchain that enables smart contracts is Ethereum. 
Smart contracts, which are pieces of general-purpose 
computer code, have been used to implement 
cryptocurrency and crowdsourcing projects (ICOs). The 
security of smart contracts in Ethereum is a significant 
issue. Smart contracts are unchangeable after deployment, 
in contrast to conventional software development. Hence, 
smart contract flaws and vulnerabilities might cause 
enormous financial losses. Smart contract developers are 
urged to reuse code from reliable sources in order to 
eliminate the danger of producing flawed code.  
 
The performance of various consensus algorithms are 
shown on Table 1 below. 
 

 
TABLE 1: Performance of various consensus algorithm (Source: [49]) 

Consensus Mechanism Proof-of-Work 
(PoW) 

Proof-of-stake (PoS) Improved delegate PoS (DPoS) 

Mechanism for bock 
generation 

Computing power Stake Stake votes 

Security issues Constant power Inactive nodes Malicious nodes 
Energy consumption Very High High Low 

Average block 
generation time 

10 min 65 sec 5 sec 

Reliability High Low Low 
Robustness High High High 

The complete architecture for solving the Ethereum 
Cybersecurity problem is summarized by Fig 2 below, 
which is the significant contribution from the researchers. 
 

 
 
Figure 2: Ethereum Cybersecurity with DPoS Algorithm 

 
The automatic execution of the terms agreed upon between 
two untrusted parties is made possible by the blockchain-
based smart contract. The Ethereum blockchain-based 
smart contracts suffer from a number of security flaws, 
which occasionally cause them to behave improperly. Due 
to the fact that a smart contract may store millions of dollars 
in bitcoin, these security flaws could result in catastrophic 
losses. This study presents a thorough analysis of the 
security flaws in the Ethereum network. There are a number 
of blockchain smart contract development platforms 
available, each with a unique set of features, opportunities, 
and difficulties. Developers can choose from a variety of 
blockchain systems, with Ethereum being the most popular 
and well-known. Solidity-written functions, events, and 
state variables make up the majority of Ethereum smart 
contracts. The executable code, contract address, state made 
up of private storage, and balance in virtual currency make 
up an Ethereum Smart Contract account (Ether). With a 
contract invoking transactions to its unique address, a smart 
contract can be triggered, with some parameters such 
invocation data and payment in the form of ether as 
transaction fees (Gas). Due to the immutable nature of the 
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blockchain, a smart contract cannot be altered after being 
deployed on it. Thus, when developing smart contracts, 
developers should take security flaws and recommended 
practices into account. Blockchain has a reputation issue 
since it is frequently associated with cryptocurrencies and 
perceived as a place where fraudsters and attackers thrive. 
 
 
 

V. CONCLUSION 
 
In conclusion, our study has shown how deep reinforcement 
learning and Q-learning algorithms can improve the 
Ethereum blockchain network's security. By employing 
these methods, cyberattacks may be detected and prevented 
with greater accuracy, enhancing network security as a 
whole. According to the findings of the research presented 
in this paper, many sorts of assaults, such as double-
spending attacks and 51% attacks, can be successfully 
identified and mitigated using the suggested approach. In 
order to improve over time, the system may also be able to 
adapt to new assault scenarios and learn from its mistakes. 
As a result, using Q-learning and deep reinforcement 
learning algorithms offers a viable way to raise the security 
of blockchain networks like Ethereum. In addition, Q-
learning algorithms can be utilized to create a successful 
plan for seeing and stopping possible assaults before they 
happen. Combining these two methods makes it possible to 
design a cybersecurity system that is both proactive and 
reactive. To further increase the resilience of blockchain 
networks against cyberattacks, further research in this field 
may examine the application of additional machine learning 
methods or the incorporation of extra security mechanisms. 
Overall, the findings of this study show that the Ethereum 
network's security may be greatly increased by the 
application of deep reinforcement learning and Q-learning 
algorithms. Even if there is still much to be done in this area, 
we think that this strategy offers a solid framework for 
future study and research in the topic of blockchain 
cybersecurity. Ethereum is a blockchain that enables smart 
contracts, which are used to implement cryptocurrency and 
crowdsourcing projects. Smart contracts are unchangeable 
after deployment, making them vulnerable to security flaws 
and vulnerabilities. Smart contract developers are urged to 
reuse code from reliable sources in order to eliminate the 
danger of producing flawed code. High-activity verified 
smart contracts typically include a limited amount of source 
code and have at least two subcontracts and libraries, 
demonstrating unique complexity features. This study 
presents a thorough analysis of the security flaws in the 
Ethereum network. Solidity-written functions, events, and 
state variables make up the majority of Ethereum smart 
contracts, and the executable code, contract address, state 
made up of private storage, and balance in virtual currency 
make up an Ethereum Smart Contract account (Ether). 
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