
Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4321

Recovery and Concurrency Challenging in

Big Data and NoSQL Database Systems

 Amira Hassan Abed

Department of Information Systems center

Egyptian Organization for Standardization & Quality, Egypt

mirahassan61286@gmail.com
---ABSTRACT--

Big data is becoming a very important concept nowadays as it can handle data in different formats and structures,

velocity, and huge volume. NOSQL databases are used for handling the data with these characteristics as

traditional database can’t be used in managing this type of data. NoSQL database design is based on horizontal

scalability with the concept of BASE which supports eventual consistence and data is considered in a soft state and

basically available. Although NoSQL has a lot to offer when used in big data it is still not mature enough and faces

some challenges including low join performance, concurrency control and recovery. Not only this but also it is

very challenging for organizations to know which NoSQL data model to use and how does it fit with its

organizational needs. This paper mainly displays the different NOSQL data models and the opportunities and

challenges alongside with some techniques for handling these challenges.

Keywords: Big data, NOSQL Data Model, Undo Recovery techniques, Disaster Recovery, Holistic Disaster

recovery approach, Concurrency Control, synergy Systems techniques.

--- ---

Date of Submission: Jan 24, 2020 Date of Acceptance: Feb 01, 2020

--

I. Introduction

Big data is a new term that describes enormous volume

of data which is generated with different formats and is

considered data in motion and basically produced from

everything around us [1]. It is more of a perception for

collecting, consolidating and investigating the data and

storing it [2]. Big data doesn’t have a standard definition

so experts in the field decided to use the expression Three

Vs to express it where these Vs stand for Volume, velocity

and variety [2]. The emerging of big data was a result of

the limited capabilities of traditional database in managing

the datasets with these characteristics [3]. The data

involved in big data can either be structured, unstructured

or even semi-structured, not only that but is also be

accessed on daily basis from organizations and distinct

users. Managing data with the velocity, volume, and

variety existing in big data cannot be handled through the

traditional databases way making NOSQL database a

brilliant management substitute in big data.

Basically, NoSQL is a non-relational database

management system that neither uses SQL query language

for operation data nor is based on tabular relations that are

extremely good in dealing with the large amount of data

involved in big data. The main concept upon which

NoSQL is based on is the notion of distributed storage of

data alongside to the handling of parallel processing [1].

NoSQL is based mainly on horizontal scalability and there

are a lot of different implementations, different systems

and techniques in building a NoSQL database system.

NoSQL databases mainly differ in the way data is stored

and accessed they can be classified into many different

types for example, wide-column store, document store,

and value store each of which has its own characters and

these three categories cover most of the techniques

involved [2]. NOSQL doesn’t account for ACID

transaction which stands for Atomicity, Consistency,

Isolation, and Durability. The concept of ACID is not

working very well with distributed systems and as a result,

it doesn’t work well with the big data due to its 3Vs

characteristics [3].

There are a lot of technical challenges in NoSQL in big

data that could be addressed including query processing

and handling complex queries which are compromised on

the account of scalability, concurrency and recovery

challenges. Not only that but also other challenges exist

due to the fact that it is still considered a new technology

and it is not mature enough. Another challenge is the

ability of an organization to choose and decide on which

data model to follow according it its own needs [2].

Organizations now a day are mainly founded on the

NoSQL database and this lead to the need of protecting the

data used and highlighted that there is a huge gap in data

fortification. As for concurrency in the NoSQL systems it

has been highlighted that the existing concepts of

concurrency control don’t work well with scaling even

though the traditional techniques can be used it still

reduces the performance of NoSQL systems [4]. Even

though the concept of replication in big data NoSQL helps

a lot in the process of recovery but yet a more robust

recovery and backup approach is still needed. This is due

to the fact that replication is creating a copy of the original

data that could be corrupted before replication leading to

loss of data. Backups is a very good strategy to accompany

the replication process as it the process of taking copies of

data at certain time where these copies could be restored to

gain back the lost or corrupted data [5]. In order to

understand the different concurrency, recovery and backup

techniques we must first understand the different NoSQL

databases.

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4322

 This paper is divided to many sections; first the work

illustrates the different NoSQL models, their

characteristics main functionalities and comparisons

between different models. Section 2 addresses the state of

art of NOSQL databases. In section 3 opportunities that

NoSQL provide and challenges that are still many in

NOSQL are introduced. The next section will cover

different techniques, methodologies and approaches in

NOSQL in different two very important aspects which is

the recovery and concurrency

II. NOSQL DATA MODELS

Although there are various NoSQL DBs, but four data

models have been addressed to be the most important, they

are introduced below. Each model hold its specific

properties although the differences between the introduced

data models. In fact, all NoSQL databases were developed

to support distribution features and scaling horizontally

features. The key- value model will be introduced first.

A-Key-Value Store DB: Although it is considered as a

simple NoSQL database but it also efficient and powerful

DB. The data in this model is stored in two dimension, a

string that act as the key and the actual data that act as the

value, that result in generating a “key-value” pair. This led

to values that are indexed using own specific keys for

query processes; this concept is identical to concept for

hash table. In other words, the store enables the users to

retrieve the requested values based on the key specified to

them. The key value model has the ability to process

structured or unstructured data. It grants advanced

concurrency and scalability in addition to rapid scans,

however that it provides low consistency. The Key-Value

store DBs have been used in building online shopping

carts and high number commercial sites which it allow the

feature of storing the requested users sessions. The well-

known examples for this category are “Apache

Cassandra”, “Azure Table Storage (ATS)”, and “Basho

Technologies (Riak)”. One of the advantages provided by

Key-Value store database is its increasing the insert and

read averages in comparison to traditional SQL database.

This is fulfilled and obtained depend on provision many

entries to the store as presented in the following example:

B -Column Oriented/wide-column Store DBs – In this

category of NoSQL database, the columns are realized and

determined in relevant to each row in state of predefined

by the table organization owned uniform sized columns

for each tuple. Such these stores introduce a two-

dimension gross/aggregate organization, a key and a row

gross that is defined as a set of columns. This allows any

column to be added to any particular row, and in this case

the rows can own a lot of various columns. In other words,

each row possesses a number of different columns that

were maintained and stored. It also is able to maintain data

in tables like segments of data columns. Data is presented

like “row-oriented” where each row is a gross or as

“column-oriented where in this state every column

segment introduced a specific record type. Each key is

typically connected to one or more specific numbers of

columns and a key for every column segments is used for

its capability to fast and high data retrieval processing

with little input or output activities thus it offering and

obtaining rapid extensive a performance. These databases

moreover support the feature of high scalability as well as

mainly store data items in significantly distributed

architectures. These Wide column DBs is appropriate to be

used and have important role when they included within

applications specified to data mining and analytic tasks

with Big Data. The well-known examples of these column

oriented stores providers are “Facebook advanced

performance Cassandra”, “Apache Hbase”, and “Hyper

Table”.

C- Document Store Databases – this type of NoSQL DB

typically spins the main key-value DB category concept

and stores complex data structure included and stored in

different document form such as XML / JSON. A

document store DB is considered schema-less in which

every specific document possess ability to stores various

needed fields under any defined length. Documents are

accessed and also identified based on a particular unique

key that it possible to be simple string form, URI string

type or also a path string. Document databases are more

complex databases but grant advanced features and

capabilities like raising performance, horizontal scalability

and schema flexibility these all properties help in storing

virtual manner any organization requested by any

particular application. Document oriented DBs are

considered proper for many systems such as content

management and blog system. Many examples for

document oriented DBs; the common ones are

“10generation MongoDB”, “Apache CouchDB”, and also

“AWS DynamoDB”.

D- Graph Store or as known “Graph database” this type

based mainly on the defined relationships between the

existing data items. It follows moreover the graph theory

technique to maintain the data and optimizes/enhances the

search processes through enables an index free adjacency

mechanism. It is developed typically for data whose

relationships are exactly full structured by graph

organizations composed of sets of property, node, and also

edge. A node act as a particular object, an edge determined

the explicit relationship between the objects and the

property is the node hold over the other end side of

specific relationship. According to the index free

adjacency approach, each node mainly involved a pointer

where it directly and forthright refers to the specific

adjacent node as presented in the supported Figure 1.

These stores provide extensive capabilities such as

advanced performance, compliance to ACID base and

supporting rollback property. These databases are typically

convenient and fit to building applications specified to

social networks, bioinformatics, as well as the cloud

services. The common applications for Graph DBs are

Orient DB and Apache Giraph.

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4323

Figure1: Graph algorithm.

The work now present a significant comparison around a

number of the most prominent key-value, document and

wide-column stores. The proposed comparison show how

SQL and NoSQL DBs are developed to support many

different requirements: RDBMSs provide an unmatched

level of functionality whereas NoSQL databases excel on

the non-functional side through scalability, availability,

low latency and/or high throughput. However, there are

also large differences among the NoSQL databases. Riak

and Cassandra, for example, can be configured to fulfill

many non-functional requirements, but are only eventually

consistent and do not feature many functional capabilities

apart from data analytics and, in case of Cassandra,

conditional updates. MongoDB and HBase, also they grant

stronger consistency and high advanced functional

features such as peruse queries and filter queries, however

they not enable read and write availability during

partitions operation and resort to offer optimizing read

latencies. Redis, which considered the only not partitioned

system included within this comparison apart from

MySQL, it represent an explicit group of trade-offs

focused on the ability to maintain high throughput at low-

latency supported with in-memory data structures and

asynchronous master-slave replication. An extra detailed

and wordy comparison around each prime system’s

capabilities is introduced in the shown Table 1.

III. State Of Art

NoSQL databases shifts from the ACID properties which

are the base of relational databases and adopts the concept

of BASE (Basically Available, Soft state, and Eventually

Consistent), along with adopting the CAP theorem [6].

The CAP Theorem which stands for Consistency,

Availability, and Partitioning was introduced by Eric

Brewer, where he stated that a system can only account for

two of these three characteristics either availability and

partitioning (AP), or consistency and availability(CA) or

availability and partitioning (AP) [7].

Table1: the comparison between Mongo DB, HBase, Cassandra, &Ria

Dimension MongoDB HBase Cassandra Riak

Model
Document Wide-column Wide-column Key-value

CAP CP CP AP AP

scan

performance

High(with

appropriate shard

key)

High (only on

row key)

High(using

compound index)
N/A

Network latency

Configurable:

nearest slave,

master

Designated

region server

Configurable: R

replicas contacted

Configurable: R

replicas contacted

Durability

Configurable:

none, WAL,

replicated (”write

concern”)

WAL, row-

level versioning

WAL, W replicas

written

Configurable:

writes, durable

writes, W replicas

written

Replication

Master-slave,

synchronicity

configurable

File-system-

level (HDFS)
Consistent hashing Consistent hashing

Sharding

Hash- or range-

based on

attribute(s)

Range-based

(row key)
Consistent hashing Consistent hashing

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4324

Unlike the ACID, BASE supports the concept of

eventually consistent which allows improved performs for

NoSQL as all the replicas of the data will reflect the

performed transaction as time propagates it doesn’t have

to be reflected instantly [7]. This will lead us to explore

the different techniques used in the NoSQL database that

make them what they are; these techniques are Sharding,

replication and query processing [2].

Sharding technique helps NoSQL databases to achieve

excessive scalability by partitioning or sharding the data

thru separate nodes either by following the range-sharding,

hash-sharding, or group-sharding. As for the replication it

is creating copies of the data that can be accessed at any

site to avoid any failures that might result for the large

volume and velocity of data in the system. Replication can

be classified into synchronous, asynchronous, primary

copy, or even update anywhere all of this classification

reflects the technique by which all the replicas will

eventually be the same reflecting the same copies after

transactions have been performed [2].

 Last but not lease is the Query processing technique in

NoSQL, it is very similar to query processing in

distributed database systems and it required a “Query

planning” task to help in decreasing the execution cost as

there are many replicas [2]. The query planning is very

vital especially when executing aggregation and joins.

Deciding which NoSQL to choose within an organization

is a very tricky and challenging task. A lot or researches

and surveys have been conducted to try and create a road

map for organizations on how to find the best NoSQL

database to use. NoSQL databases are categorized into

different types: key-value, document, wide-column store

and graph database [8].

Each data type uses a combination of different sharding,

replication and query processing. The key- value store is

the simplest form and considered assembles model, where

it is basically a prearranged collection of unique keys with

key-value pairs only executing create, read, update, and

delete (also known as CRUD) operations [2]. The

Document store is based on the key concept of

the key-value store but also only works with semi-

structured arrangements such as Jason and it allows us to

work on parts of the document and work on it including

databases like Couch Band MongoDB. While the wide-

column stores model is based on rows and column keys

and can be found in Hbase, Cassandra and Big table

databases. The row column has to be coupled with the

column key for a successful retrieving process [2]. The

Graph NoSQL database like Giraph and Neo4j represent

where the representation of objects and relations is in the

format of a graph with nodes and objects and relations as

edges [8].

On the side, for recovery and backup techniques Kathpal

& Sehgal [9] indicated that as NoSQL DBs are receiving

high significance in business applications industry, but

they suffer from unique limitations in the areas related to

recovery and backup. The authors identified these

drawbacks as, “cluster consistent backup and emphazing

on resolve free restoring, efficient backup space/storage,

and finally, topology oblivious backup and recovery.” As

a result, the authors attempted to introduce the BARNS as

the solution to face the above identified recovery and

backup drawbacks in the NoSQL DBs resident on shared

storages. Their BARNS solution is leveraging “light-

weight” snapshots that generating copy-on-write and

writable snapshot capabilities related to shared storage.

They leverage NoSQL DBs approaches by providing

cluster consistency through backup process, ridding of

identical replica copies and are resilient to topology

modifications and changes through recovery and backup

processes. BARNS save about 66% of storage spaces by

reducing two replica copies for MongoDB (master- slaves)

and Cassandra (master-less). But according to [10], they

have reported that the NoSQL databases have developed

as respond to continuous increasing in datasets volumes.

However, these NoSQL databases solutions do not support

out of the box the necessary backup and recovery features

needed by many big data modes. So they address this

aspect through introducing an extensive disaster recovery

method proposed for big data NoSQL tasks. This approach

is able to be employed for least recovery point and time

aims at minimal costs. Their approach is highly scalable,

according to open sources combinations and significantly

convenient to every document-based NoSQL, as allowed it

to be more attractive for various big data workloads.

Consistency

Master writes, with

quorum

reads linearizable

and else eventual

linearizable

Eventual, optional

linearizable

updates

(”lightweight

transactions”)

Eventual, client-

side

conflict resolution

Atomicity Single document
Single row, or

explicit locking

Single column

(multi-column

updates may cause

dirty writes)

Single key/value

pair

License GPL 3.0 Apache 2 Apache 2 Apache 2

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4325

Another novelty in this proposed backup and recovery

approach represented through the backup and recovery tier

that mainly prolong bidirectional replicating, in which the

replication of data performed by replicating the data from

the database into the steady storages. Also, David &

Miguel [5] point that according to the NoSQL databases

simplicity and flexibility these databases solutions become
very popular among web application developers. But in

general these NoSQL databases usually provide basic

backup and recovery mechanisms that enable restoring

databases from crash actions, but not to remove undesired

operations caused by accidental or malicious actions. As a

result, the authors proposed NOSQL UNDO as a

recovery method and tool in which it enable database

administrators to delete any undesirable effect caused

during the above actions by “undoing operations”,

resulting in a consistent system mode. NOSQL UNDO

enhances the log in addition to snapshot tasks built-in

NoSQL databases, and is allowed to undo processes as

they are present in the logs. This is, as far as we know, the

prime recovery service grants these capabilities for

NoSQL databases. The experimental findings for this

study with MongoDB reveal that it is possible to undo an

individual operation in a log with 1,000,000 entries in

around one second and to undo 10,000 incorrect

operations in less than 200 seconds.

IV. Opportunities and Challenges

NOSQL Systems added tremendous value to different type

of systems especially systems provide real time services or

near real time services; it represents the storage layer for

huge amount of various types of data in those systems and

helps them to provide low latency to the requests of the

user with high throughput against massive distributions

and high fault tolerance. NoSQL DB store data with their

raw state of these data without making any transformation

over that data, unlike it handled in relational Database

which gives us the power to discover hidden pattern,

modules and increasing information business value.

NoSQL databases ended the complexity of dealing with

SQL queries or nested queries instead provide very simple

ways to retrieve the data. NoSQL uses cheap commodity

servers and hardware to deal with these data volumes as a

result the Cost is quite less compared to relational database

which need very expensive hardware to prevent the

bottleneck and support fault tolerance. NoSQL data base

depends on Base which states for “basically available soft

state eventually consistent” the management of the change

had always been a struggle with RDBMS which request

high consistency that need excessive management and

reducing of the provided service levels and unwanted

downtime. NoSQL however is more relaxed “soft state”

and can alter itself easily to suit these changes [2].

Regardless of the tremendous opportunities that the

NoSQL provides for business in the area of big data it still

faces a lot of challenges appeared in recovery, consistency

and query processing. Achieving any level of consistency

in NoSQL DBMS accounting for the ACID properties is

considered one of the challenges that faced alongside with

acquiring speedy performance when accessing distributed

data stores. Even though NoSQL supports relaxed

consistency still the existence and handling of different

replicas lead us to the challenge of concurrency control

and which replica is to be accessed and how can we handle

the concurrency. Applying concurrency control

mechanisms in the NoSQL databases shouldn’t come on

the expense of the query processing performance and

performance.

There are different concurrency control techniques

allowing read and write including optimistic concurrency

control, multi-version, snapshot isolation and others but

the most important factor to account for is how will they

affect our performance. In addition to that the nature of

NoSQL leads the researchers to an extremely vital aspect

which is the recovery. Even though the existence of

replicas might mistakenly represent the illusion that data

will not be lost but that’s not the case as they don’t
account for out of the box capabilities for restoring,

recovering and necessary backup techniques to account for

different catastrophic events [5].

Recovery techniques used in most NoSQL database are

considered modest mechanisms and are basically only

based on logs whether local or global logs and snapshots

that come in use when server crashes for instance [10].

The existing techniques are acceptable but they don’t
account for the effect of faulty operations, whereas if an

executed operation lead to tainting the database the

restoring of old version from the snapshots will help get

back the data but will also result in losing operations that

have been performed after it was taken leading the data to

be in an incorrect state and not reflecting the actual correct

version [10].

V. Recovery and concurrency techniques

In this section the study discuss different techniques of

some of the addressed challenges that discussed in the

previous section, that focusing on the NoSQL recovery

and concurrency challenges. Although the difference in

NoSQL model systems but at the end they have the same

system architecture which consists basically of minimum

two shards, then data are sliced to smaller parts at theses

shards which are a set of servers with the same copy of

data “replicas”. Replica can provide the basic recovery to

the systems. It works as a fault tolerance. The replication

servers differ in functionality. The primary server keeps

data consistent inside a shard where routers servers split

data correctly and divide records in shards. Routers servers

are the main part to communicate with the applications.

The more routers servers the more the availability of the

systems are increased. Database couldn’t be accessible of

the all the routers are dead; it affects the performance and

availability [5].

Recovery in NOSQL systems depends as well as on the”

logging mechanisms which records database requests and

take periodic snapshot, permitting the recovery of the

system in case of failure.” [5]. Local logs which also

called “diary” used to fix server from the unexpected

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4326

failure which writes every operations to disk, after the

failure, fail- over should be applied to return the different

replica to work state In some times this log is not enough

for recovery since it only have recent operations, so it is

efficient to use a snapshot (a full copy of the server in a

previous time). Each individual server or replica has it is

own logs so in case of all servers failures, it is very hard to

recover the entire database using local logs of each server

or replica. The global logs are providing very important

rule to keep data consistency across different servers by

delivering the requests in the same orders to all servers.

Global logs provides guaranties cause of saving each

request they receives that in case of some requests lost or

couldn’t be delivered in the same orders the ability to

check the global log and execute that request.

NoSQL Undo recovery technique is one of the very

important useful techniques & the first recovery service

that offers these Capabilities for NoSQL databases with its

architecture. It is a client side that only accesses a NoSQL

database instance when the database administrator needs

to delete the influence of some operations from the

database, because they are malicious for example. No

need for the client to be connected to the server in run time

since it uses the database built-in logs to do recovery. It

also does not need an extra server to act as proxy where it

only uses the built-in log and snapshots of the database to

achieve recovery. No need also for extra meta-data or

modifications to the database distribution or to the

application using the database. NOSQL UNDO is also the

first that supports such a replicated and shared architecture

system type database which the study discussed in earlier

sections. In opposite the Rollback technique is removing

of the detected incorrect operation and revert the entire

database to a previous point before the execution of the

incorrect operations which cause a challenging drawback

that each correct operation executed after the point in time

to recover is completely lost. Two main methods of

NOSQL UNDO to delete the effects of incorrect

operations return back the database into correct state. Full

recovery and Focused recovery. Both methods take input

as list with operations to be undoing.” [5]

 Full recovery: The full recovery method is much simpler

then focused recovery method and very effective. It loads

the most recent snapshot of the database, and then

updating the state by implementing the rest of the

operations, which were previously recorded in a log. It is

better to use the full recovery method with big set of

operations to undo, where it requires executing every

correct operation in the log after the snapshot.

 Focused recovery: The main concept behind Focused

Recovery is instead of recovering the entire database just

to delete the influence of a small set of incorrect

operations, only compensation operations are

implemented. A compensation operation is an operation

that corrects the effects of a faulty operation. Efficient

more with the small number set of the incorrect

operations.

Another huge challenge addressed in NOSQL systems is

recovery from disaster failure [10]. Replication and

different backup capabilities can only support recovery in

local storage only against crashes not human errors or

malicious security issues [9] in this section, the study

provides the Holistic backup/restore approach to handle

the disaster failure inside the NOSQL systems. This

disaster recovery approach can be applied to any

document-based NoSQL database. It is very highly

scalable and fixable and based on open source

components. “The holistic approach achieved regarding

these main concepts The Recovery Time Objective (RTO)

that defines specifically the maximum allowable period

until application service is restored after a failure event

[11] and The Recovery Time Objective (RTO) define

specifically the maximum allowable period until

application service is restored after a failure event. So this

approach can provide low recovery point and time

objectives at low costs [11].

The holistic backup store approach depends on three main

features. These unique features are Trigger-based backup

approach, High parallelism and High modularity. It also

consists of 4 tiers or models which are a) The load-

balancer module b) the backup and restore management

module c) the monitoring module, implemented using

ZooKeeper [12], and d) the stable storage module,

implemented using Hadoop File System (HDFS) [13].

The holistic approach provides two backup modes of

operation: 1) on-demand; and 2) continuous (the default

mode). The load balance tiers consist of two components,

the main load balance which is small server sends the

backup/restore REST requests to a random (stateless)

worker out of the backup and restore management tier.

And one or more secondary load balancer. The zookeeper

chooses the main load balancer in case of failure. The

main load balancer main functionality is handling all

requests at certain points. The BRM is a fixable tier

composed out of stateless workers that are performing

backup/ restore/ change requests received from the load-

balancer tier. When the BRM worker receives a request it

instantly replays with positive status and serves the

request. When the BRM worker ends with serving the

request it deletes the request from its queue. Zookeeper

module it provides higher level services, these services

include the following: Group membership, Metadata

storage; and Leader election. These services are used by

the load-balancer and backup/restore tiers. The leader

choosiness is picked by the load-balancer tier for electing

the primary load balancer server. The metadata storage is

serving the Queue management functionality: each

backup/ restore worker has its queue keeping all the not

finished requests served by this worker. Backup Version

provide the holistic approach in different document level

versions with different period time base, daily, weekly,

monthly. Recall that we influence the version number

attached to each database document. This number reflects

the state of the document in a certain time.

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4327

The first backup is asking to takes a full backup of the

entire database. The versions and the states of the

documents are maintained by the database. The first

backup is treated as the ‘baseline’ for other changes. In the

continuous backup mode, upon every database change, the

primary load balancer is informed with nonfiction contains

the new/changed document attached with a new

(increasing) version number. After this point, the system

saves and backups only a changed document since the last

‘baseline’. These changes from the last ‘baseline’ are

taken as ‘baseline delta’. The system configuration counts

how many ‘baseline delta’ to preserve before creating a

new ‘baseline’. Daily ‘baselines’ turned to be weekly

‘baselines’ and weekly ‘baselines’ turned to be monthly

‘baselines’. This scenario is shown in Fig. 2.

On the other side, the study now discuses the concurrency

control that addressed as challenged area in the NOSQL.

According to [4], they handled concurrency control issue

in NOSQL DBMS by applying the Synergy system

technique. The main purpose of proposing the synergy

system is to improve performance in NOSQL databases

using Materialized views (MVs) and a specialized system

for concurrency control based on the top. Not only has that

but also helped offering a scalable data management

offering good ACID semantics. The synergy based

systems first foundation is having quicker join

performance to increase the disk operation based on

materialized views.

Figure 2: “backup versioning: the new baseline gather the

baseline delta into a tt less granular time slice” source [10]

Generally, Materialized views (MV) is an object of the

database where the query results are held and basically

are locally replicated data that is remotely local located.

The addition of MV to the NoSQL capabilities is purely

aimed to enhance its performance but alone it will lead

us to facing the consistency issues that lead the authors

to account for concurrency control in their model as

multi-versioning or locking techniques to help resolve

this issue. They decided to resolve the consistency issue

applying a layer of concurrency control above the

NOSQL database with its selected MV involving only a

single lock to be seized in a transaction using a

hierarchal locking mechanism.

The first step in the formation of their model was how to

reach the best way to integrate MVs into the NoSQL data

stores without compromising its consistency. In the start,

they considered the implications of materialized views, the

lock number and granularity following them was the view

selection challenges. They settled on using a lock-based

concurrency control mechanism since it was proven that in

NoSQL multi versioning the acquiring and checking of

additional rows timestamps hugely reduces the

performance. The lock number should be as minimized as

possible as the lock acquiring process can be highly costly

in the presence of the selected MV in the NoSQL leading

them to choosing single lock concurrency control

mechanism. They based their model on schema based

workload driven views that work best with the criteria in

mind. The following figure illustrates more the selection

choices they followed in their design.

The synergy system architecture consists of the following:

HBase layer, client and Transaction layer.

 HBase layer: This layer includes HDFS, Zookeeper and

the HBase components and it acts like a layer of

distributed data storage [14].

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4328

Figure 3: Design choices and decisions in the Synergy

System [4]

 Client layer: The read and write statements are executed

in the workload where a read request is directly sent to the

Hbase layer and the write request to the other layer which

is the transaction layer and then a synchronized response is

received.

 Transaction layer: The main purpose for including this

layer is accounting for the ACID transaction support along

with the HBase layer. It consists of a Master node and 1 or

more slave nodes for handling concurrency in the layer

which is a scalable and distributed layer accounting for

fault tolerance. In this layer a manager transaction is

assigned to each slave node for handling recovery and

durability by implementing a write a head log which is

stored in the HDFS in the Hbase layer. When it receives

the write transaction request the first step is to assign an id

and add both the statement and the id in the write a head

log then when the transaction is executed the response is

sent back to the client. The existence of the Master node is

solely for the purpose of spotting any failures within a

slave nod and assigns a new slave node to perform and

execute the task of the failed one.

The synergy system accounts for light weighted lock

technique by using a single lock per its write operation by

using a logical lock and a physical lock through the

implementation of a lock table. In the system the base

tables, indexes and views are automatically updated for

each transaction procedure. Finally, the system is set to

provide a transaction isolation level for both the read

committed and the ACID semantics.

Figure 4: Synergy System Architecture Overview [4]

The authors of the paper conducted experimental

comparisons with other systems in terms of the

concurrency control mechanism and the selection of

Materialized views and it was obvious that the

concurrency control in the proposed synergy system

results in a much better output in terms of writes and read

response time and performance. Not only that but also the

response time when using them is significantly higher than

other systems except for when it comes to the join the

performance is slightly slower than the VoltDB which

doesn’t use any MV and is based on single threaded

partition processing. They also created a qualitative

comparison of NoSQL, NewSQL, and Synergy in terms of

scalability, query expressiveness, transaction support and

disk utilization displayed in the next table. The synergy

system yet still has some limitations as they are limited to

single SQL transaction statements and key-foreign key

Int. J. Advanced Networking and Applications

Volume: 11 Issue: 04 Pages: 4321-4329 (2020) ISSN: 0975-0290

4329

equijoins. Also the level of separation is only limited to

the read commits.

VI. Conclusion
Throughout this survey paper, NoSQL database

management systems and their different data models and

techniques used in building up these data models including

sharding or partitioning, replication and query processing,

were discussed. Upon understanding how big data NoSQL

systems work a few issues were raised including recovery

and concurrency control. The work discussed the

techniques handling these issues like a holistic backup

approach for handling the recovery issue and Synergy

System which is a technique for handling concurrency

control in Hbase NoSQL and NOSQL UNDO. The survey

also displayed the benefits and the shortcomings for each

of these approaches.

Table 2: Qualitative comparison of NoSQL, NewSQL and Synergy systems [4]

References

[1] Amira H., Mona N., & Walaa S. (2019). The future of

internet of things for anomalies detection using

thermography. International Journal of Advanced

Networking And Applications. 11(03). P: 4298-4304.

[2] F. Gessert, W. Wingerath, S. Friedrich & N, Ritter,

NoSQL Database Systems: A Survey and Decision

Guidance. Springer-Verlag Berlin Heidelberg. (Nov.

2016)

[3] M. Razu, M. Khatun, M. Asraf, & K. Sundaraj (2018)

A Literature Review On NoSQL Database For Big Data

Processing International Journal Of Engineering &

Technology, 7 (2) pp.902-906

[4] A. Tapdiya, Y. XueAnd D. Fabbri, (2017). A

comparative analysis of materialized views selection and

concurrency control mechanisms in NoSQL databases.

IEEE clusters conference.

[5] D. Matos & M. Correia. NoSQL Undo: Recovering

NoSQL Databases by Undoing Operations, IEEE 15th

International Symposium on Network Computing and

Applications (Nca), (Dec.2016).

[6] A. Hamed Al Hinai. A Performance Comparison of

SQL and NoSQL Databases for Large Scale Analysis Of

Persistent Logs, Http://Www.Teknat.Uu.Se/Student, 2016

[7] A. Khan Zaki. (2014). NoSQL Databases: New

Millennium Database for Big Data, Big Users, Cloud

Computing and Its Security Challenges, IJRET:

International Journal of Research In Engineering And

Technology, (3)3. P: 403-409.

[8] M. Teresa, A. Ogunyadeka, M. Younas, J. Tuya & R.

Casado. (2017). Transaction processing in consistency-

aware user’s applications deployed on NoSQL databases.

Human–Centric computing and Information Science. (7)7.

[9] A.Kathpal and P. Sehgal, (2016). BARNS: Towards

Building Backup and Recovery for NoSQL Databases.

Proceeding, Hotstorage Proceedings Of 9
th

Usenix

Conference On Hot Topics In Storage And File Systems.

[10] A. Abadi, A.Haib, R.Melamed, A.Nassar, A.

Shribman, & H. Yasin. Holistic Disaster Recovery

Approach For Big Data NoSQL workloads, IEEE

International Conference On Big Data. (2016).

[11] K. KEETON, C. SANTOS, BEYER, D. J. CHASE, &

J. WILKES. Designing for disasters. In Proceedings of the

3rd USENIX Conference on File and Storage

Technologies (Berkeley, CA, USA, 2004), FAST ’04,

USENIX Association, pp. 59–62.

[12] Apache ZooKeeper - Home. https:

//zookeeper.apache.org.

[13] Apache Hadoop. http://hadoop.apache.org.

[14] “HBase. [online]. available:

http://hbase.apache.org/.”

Author Detail:

Amira Hassan Abed received her B.Sc.

degree in Information Systems from

Helwan University, Egypt, in 2009 and

her M.Sc. degree in Information

Systems from Faculty of Computers and

artificial intelligence, Helwan

University, Egypt, in 2017. She has

been working toward the Ph.D. degree

in Information Systems, Faculty of

Computers and artificial intelligence, Helwan University, since

September 2017. Her main areas of research are machine

learning, Internet of Things (IoT), bioinformatics, Business

intelligence, Customer relationship management (CRM).

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7764659
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7764659
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7764659
http://www.teknat.uu.se/student
http://hadoop.apache.org/

