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----------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 

In the realm of the modern economy, wood structures and products hold immense significance, serving a wide array 

of applications. However, within production systems handling wood raw materials, numerous challenges arise. The 

high variability in raw materials, accompanied by a diverse range of structural flaws, presents complexities in the 

production processes. Verifying these flaws, whether online or offline remains a critical task, often relying on manual 

inspection.  Yet,  manual  procedures  not  only  encounter  challenges  and  biases  but  also  prove  ineffective  and 

misleading. 

The study shows discrete wavelet analysis's effectiveness in defect detection across diverse wood types. However, 

accurately  classifying  defects  becomes  challenging  due  to the  complexity  of  higher-level  directional  coefficients 

obtained from DWT. To address this, the proposed DWT-Deep-Net model combines CNN and RNN (LSTM). This 

fusion simplifies defect classification after DWT, using mean square energy from detailed coefficients, enhancing 

defect diagnosis across various deep learning classifiers. 

In the DWT-Deep-Net model, the CNN and LSTM components work in tandem: the CNN adeptly extracts abstract 

features from raw subsequence data, automating this process, while the LSTM specializes in capturing long-term 

relationships within time series inputs. This integration allows for efficient extraction of abstract feature 

representations from the data, optimizing the classification process. Notably, the proposed methodology demonstrates 

superior classification accuracy when compared to existing state-of-the-art methods. This enhancement in accuracy 

underlines the effectiveness of this combined CNN-LSTM approach in addressing the challenges posed by defect 

classification post-DWT decomposition, offering promising results for wood defect detection. 
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I.  INTRODUCTION 

Wood stands as a valuable natural resource, but 

imperfections in wood products significantly diminish their 

market value. Wood veneers often exhibit flaws like live 

knots, dead knots, and cracks due to poor-quality raw 

materials and inefficient manufacturing techniques. These 

flaws in wood processing industries, especially in several 

developing nations, limit the utilization of raw timber 

supplies.   Despite   advancements,   visual   inspections   by 

trained personnel remain predominant in assessing wood 

quality [1]. 

For wood veneer processing firms, optimizing wood 

utilization rates and maximizing profitability have become 

imperative.  Rapid  and  accurate  identification  of  wood 

defects is essential. Currently, various technologies such as 

Ultrasonic air-coupled technology [1], stress wave analysis 

[2], laser 3D technology [3], computed tomography [4], and 

computer vision [5] are employed to detect flaws in wood 

veneers. Among these, contactless ultrasonic measurement 

using air-coupled technology proves effective in identifying 

flaws based on changes in wood densities. 

Wood, renowned for its sustainability, performance, and 

aesthetic appeal, holds substantial economic and artistic 

value. Eliminating wood defects during processing is vital 

to preserve its strength  and texture. Traditional methods 

rely on manual identification, processing, and marking of 

solid-wood panels, prompting the wood industry to explore 

intelligent processing technologies since the early 21st 

century. Image processing, a cutting-edge technology in 

wood detection, has gained prominence [6, 7]. 

 
Key contributions: 

•  Utilizing DWT for Defect Detection: The research 

incorporates Discrete Wavelet Transform (DWT) from 

images to extract crucial aspects aiding in defect detection. 

By  using  different  frequency  components  collected  by 

DWT,  it  simplifies  the  distinction  between  normal  and 

faulty areas, depicting distinctive defect characteristics. 

•   Ensemble  Model  -  CNN  and  LSTM:  Leveraging 

both  Convolutional  Neural  Networks  (CNN)  and  Long 

Short-Term Memory (LSTM) in an ensemble model 

enhances defect detection in wood textures by capitalizing 

on the strengths of each architecture. 
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Synergy of Wavelet Transform and Deep Learning: Unlike 

methods solely relying on image processing, this model 

combines   the   power   of   wavelet   transform   and   deep 

learning.  This  fusion  allows  defect  detection  at  various 

scales, providing a more comprehensive solution. 

•   Advantages   over   Traditional   Approaches:   The 

proposed  model consistently outperforms traditional 

methods  in  wood  texture  defect  detection,  showcasing 

superior  accuracy,  precision,  and  recall.  The  CNN  and 

LSTM ensemble  exhibits marked improvement, 

highlighting their potential for enhanced performance. 

Adaptability and Rule-free Approach: This approach offers 

significant advantages over traditional rule-based methods 

by effectively adapting to varying wood textures and 

detecting  defects  without  predefined  rules  or  extensive 

feature engineering. 

•   Trait Analysis and Model Improvement: The model 

captures a wide range of pertinent traits in wood textures by 

considering several features. This comprehensive analysis 

improves the model's capacity to recognize and categorize 

various flaws within wood datasets. 

Scalable Architecture for Large Datasets: The model's 

architecture  is  designed  to  scale  seamlessly with  dataset 

sizes, making it suitable for accommodating increasingly 

large collections of wood texture images commonly 

encountered in industrial quality control. 

•   Epoch  Analysis  and  Training  Optimization:  The 

study systematically analyzes the relationship between 

training accuracy and epoch ranges, providing insights for 

optimizing the training process in defect detection models. 

Findings  suggest  substantial  accuracy improvement  after 

100 epochs, offering valuable insights for training 

optimization. 

Contribution to Understanding Training Dynamics: By 

systematically analyzing the relationship between training 

accuracy and epoch ranges, this documentation aims to 

contribute  to the broader  understanding  of training 

dynamics in deep learning models, specifically in defect 

detection scenarios. 

•   This article organizes its content  as follows: The 

Section  2  delves into the prior  research  on  wood 

identification  and  defect  detection,  exploring  the 

application of diverse optimization techniques. The Section 

3 outlines the problem statement, while the Section 4 

provides a concise overview of the proposed solution for 

wood surface defect detection, covering pre-processing, 

feature selection, and ensemble methods. The Section 5 

houses the results and discussions, and Section 6 presents 

the conclusion. 

 
II.  RELATED WORK 

Mahmood et al. [8] focused on utilizing image processing 

to detect broken fabric pieces. Their approach employed 

discrete wavelet analysis to examine the homogeneity of 

fabric in digitized photographs. By identifying disruptions 

in the fabric's regular structure, their method effectively 

detected and precisely located fabric defects. 

Bhusnurmath & Doddamani [9] have categorized 50 tree 

species  based  on  bark  textures  using  the  BarkVN-50 

dataset.    They    employed    deep    learning    techniques, 

specifically VGG16 and MobileNet models through transfer 

learning. Results indicated that pre-trained models 

outperformed,  demonstrating  higher  accuracy  and 

efficiency. 
 

 
Hiremath and Bhusnurmath [10] have proposed an efficient 

technique for classifying multiresolution textures by 

combining   anisotropic   diffusion   with   local   directional 

binary patterns (LDBP). This method identified dominant 

LDBP  descriptors  in  texture  classification  across  four 

diverse texture datasets. 

Gao et al. [11] have introduced the SE-ResNet18 model for 

wood knot defect recognition, authors utilized transfer 

learning, attention mechanisms, and convolutional neural 

networks (CNNs). The SE-ResNet18 model showcased 

improved accuracy by effectively enhancing pertinent 

features and reducing unnecessary ones. 

Ping’an Sun [12] developed a multi-criteria framework and 

a  deep  learning  algorithm  for  autonomous wood  surface 

fault   detection.   By   comparing   various   deep   learning 

detection algorithms, the study emphasized precision and 

training efficiency, achieving significant improvements 

through iterative prototype enhancements. 

Yaren et al. [13] investigated deep learning approaches for 

wood anomaly detection, authors compared CNN 

architectures  (including  MobileNet,  SqueezeNet, 

GoogleNet, and ShuffleNet). Encouraging results were 

observed, particularly in categorizing normal and atypical 

wood products. 

Shaoli et al. [14] introduced a classification approach using 

Local Binary Pattern and Local Binary Differential 

Excitation Pattern to distinguish mineral lines and cracks 

in  birch  wood  veneer.  By  merging  texture  description 

models and employing histograms, their approach achieved 

effective defect categorization. 

Xuyuan et al. [15] developed a feature extraction technique 

based on wavelet moments to extract wood defect features. 

Utilizing wavelet energy and invariant moments, their 

method computed modified Hu moment invariants, 

showcasing promising recognition results. 

Sung-Wook Hwang et al. [16] focused on wood knot 

classification; this study utilized artificial neural networks 

and evaluated various feature extraction methods. Texture 

descriptors  such  as  gray-level  co-occurrence  matrix  and 

local binary patterns outperformed morphological 

categorization in wood knot classification. 

MingyuGao et al. [17] proposed TL-ResNet34, a transfer 

learning-based deep learning model, for wood knot fault 

detection. This model, employing ResNet-34 as a feature 

extractor, significantly outperformed other methods in 

accuracy. 

Mohsen and Amir [18] used a naive Bayes classification 

method, Mohsen and Amir focused on detecting holes in 

marbau and pine wood. Their study considered contact 

ultrasonic tests under various conditions, emphasizing the 

influence of testing variables on results. 

Yang  et  al.  [19]  introduced  a  surface  defect  detection 

method  for  solid  wood  panels  using  the  Single  Shot 

MultiBox Detector algorithm (SSD), Yang et al. designed 
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an  improved  SSD  model  incorporating  TensorFlow  and 

ResNet for more accurate bounding box predictions. 

 
III.  PROBLEM STATEMENT 

Wood industry involves the processing of various types of 

wood  for  construction,  furniture,  and  other  applications. 

However,  the  presence  of  defects  in  wood,  like  knots, 

cracks, and discolorations, these significantly affect to the 

quality and reliability of finished products. Detecting and 

classifying these defects accurately is crucial for ensuring 

product   quality,   minimizing   waste,   and   maintaining 

customer  satisfaction.Due to the variety of tree  structure 

and the complexity of their surrounding structures, creating 

a  robust  defect  detection  technique  for  wood  presents 

hurdles.Traditional  techniques for  detecting wood defects 

frequently  call  for  the  manual  extraction  of  pertinent 

features, which can be time-consuming and may not fully 

account for all differences. Convolutional neural networks 

(CNNs), in particular, are among the Deep learning models 

autonomously acquire hierarchical features from 

unprocessed images, enabling them to recognize complex 

fault patterns without relying on manually created features. 

The  goal  of  this  study  is  to  propose  a  deeper  network 

model-based approach for finding wood defects. The model 

Deep-Net combines deep learning architectures like LSTM 

and CNN. Extraction and use of DWT features are required 

for the analysis of images. 

From  the  literature  it  is  acknowledged  that  basic  CNN 

models   have   difficulties   managing   rotated,   tilted,   or 

abnormal  image  orientations.  The  combined  Deep-Net 

model that is proposed intends to overcome the difficulty 

and enhance performance in identifying wood faults. 
 

 
IV.  METHODOLOGY 

The proposed experiment is performed on a dataset of wood 

texture i.e.  Large Scale Image Dataset  of Wood Surface 

Defects [22]. This includes different kinds of wood surface 

defects which can be normally seen in wood surfaces. The 

dataset contains the 4000 images with 8 different classes 

namely: Quartzity, Live_Knot, Marrow, resin, Dead_Knot, 

knot_with_crack,  Knot_missing  and  Crack.  The  dataset 

contains the annotation file for the classification, which is 

used for dataset creation for the proposed experimentation. 

For   the   experimented   dataset   applied   the   different 

generalized pre-processing techniques and further 

directional information of images is extracted using DWT 

and  with  help  of  Deep-Net  model  (CNN  and  LSTM) 

classified the different defects present in the dataset. 

 
 

 

Figure 1. Flow diagram of the proposed methodology 

The Figure 1 illustrates the comprehensive workflow of the 

proposed  project.  The  initial  phase  involves  gathering  a 

dataset containing various wood defect images. This dataset 

is obtained from a large-scale wood defect detection dataset, 

accompanied by an annotation file. Following this, different 

classes  are  created  through  data  preparation  using  the 

dataset and its annotation file. 

Subsequently, the prepared data undergoes generalized 

preprocessing techniques to ensure uniformity and enhance 

the quality of the images. In the subsequent step, directional 

information is computed for each image utilizing Discrete 

Wavelet  Transform  (DWT)  techniques.  Specifically,  the 

four different directional coefficients of each image are 

extracted and saved for further processing. 

The data is then split into training and testing sets to 

facilitate  model  training  and  evaluation.  For  the 

classification task, a Deep-Net model, a combination of 

Convolutional  Neural  Network  (CNN)  and  Long  Short- 

Term Memory (LSTM) models, is employed. The model's 

performance and effectiveness are evaluated, and the results 

of the model evaluation are documented comprehensively. 

 
Following sub-sections encapsulates a detailed summary of 

each of these steps, providing an organized overview of the 

methodology. 

 
4.1. Data collection 

The benchmark dataset considered for the study is 

downloaded  from  the  Kaggle  [22].Original  dataset  have 

high resolution images captured with special camera taking 

up roughly 12 megabytes (MB) of storage space is required 

for  each  image.  The  dataset  contains  the  total  of  4000 

images of different wood defects and also it’s having the 

Bounding Boxes - YOLO Format which consists the 

annotation  file.  Each  image  in  the  dataset  is  of  size 

2800x1024.The images describes the different wood surface 

defects of 8 different types, namely: Quartzity, Live_Knot, 

Marrow,  resin,  Dead_Knot,  knot_with_crack, 

Knot_missing and Crack. Detail about dataset is given in 

the Table 1. Sample images of each class from the dataset 

are shown in the Figure 2. 
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Figure 2. Sample images of all classes images from the 

dataset Large Scale Image Dataset of Wood Surface Defects 

[22],   (a) Quartzity  (b) Live_Knot   (c) Marrow  (d) resin 

(e) Dead_Knot (f) Crack (g) knot_with_crack    (h) 

Knot_missing 
 

4.2. Data preparation 

From the set of 4000 images of 8 classes and annotation file 

that is available in kaggle, for the proposed work authors 

considered  the  images  which  are  belong  to  6  different 

classes. Total 493 images are taken for the proposed work 

because   many  of  the   images   don’t   have   the   proper 

annotation and many of the images are having the 

combination  of  two  or  more  defects  in  one  image.  Six 

classes out of eight classes are considered for the study 

because two classes having images which are very low in 

count. 

Finally, 493 images separately and annotation file of these 

images separately formed the 6 different classes. Now the 

Proposed experimented dataset is having the 493 images 

with 6 different classes that are displayed in the Table 2. 

The Table 1 and 2 describe the in-depth overview of the 

datasets before preparation and after preparation. 

 
Table1. Description of the Large Scale Image Dataset of 

  Wood Surface Defects dataset [22].   

Original dataset 

 
Parameters Values 

Number of images 4000 
 

Number of classes 8 ( annotation file) 
 

Image size 2800x1024 
 

Dataset size 3.09 GB 

Image format RGB JPG 
 
 

Table2. Description of dataset considered for the 

  proposed experimentation.   

New prepared dataset 

 
Parameters Values 

Number of images 493 
 

Number of classes 6 

 
 

Image size 2800x1024 
 

Dataset size 389 MB 
 

  Image format  RGB JPG   

 
4.3. Data pre-processing 

Preprocessing is an essential stage in processes for data 

analysis  and  machine  learning.  In  order  to  make 

unprocessed data suitable for additional analysis, modeling, 

or visualization, it must be prepared and cleaned. The main 

pre-processing procedures are as follows. 

•   Resize the Image: The image is resized to a fixed 

size of 128x128 pixels. 

• Convert  to  Grayscale:  The  resized  image  is 

converted from its original representation (RGB) 

to greyscale. 

•   Denoising: function is used to perform denoising on 

the greyscale image. Denoising helps reduce noise 

and artifacts in the image, resulting in a cleaner 

and smoother image. 

•  Normalization: To normalise the denoised image, 

divide each pixel value by 255.0. In this stage, the 

pixel values are scaled to lie between 0 and 1. 
 

4.4. Feature extraction using discrete wavelength transform 

For the experiment Discrete Wavelet Transform (DWT) is 

applied  to  an  image using  the Haar  wavelet,  the 

transformed image is represented by a set of coefficients. 

These   coefficients   are   categorized  into  4  components 

details: approximation, horizontal, vertical, and diagonal. 

Each of these components captures different aspects of the 

image's frequency content and structure. 

• By using DWT offers a multi resolution representation of 

the image that divides it into many granularities. This 

enables  the  analysis  of  flaws  at  many scales,  ranging 

from minute details to vast patterns.DWT helps in 

localizing defects within an image. By decomposing the 

signal into different frequency components. 

• DWT extracts pertinent aspects that can help in defect 

detection. It is simpler to distinguish between normal and 

faulty areas when different frequency components that 

were collected by DWT are used to depict the distinctive 

characteristics of defects. 

Following  are  the  different  coefficients  which  are 
used: 

•   Approximation Coefficient (cA): 

The low-frequency components of the image are 

represented  by  the  approximation  coefficient.  It 

has a lower resolution "averaged" version of the 

original image. 

•   Horizontal Detail Coefficient (cH): 

The image's horizontal edges and high-frequency 

elements are described by the horizontal detail 

coefficient. 

•   Vertical Detail Coefficient (cV): 

The image's vertical edges and high-frequency 

elements are described by the vertical detail 

coefficient. 

•   Diagonal Detail Coefficient (cD): 
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The diagonal detail coefficient records the image's 

high-frequency elements and diagonal edges. 

 
The Figure 3 shows the sample images of the class 

Dead_Knot after applying the DWT directional feature 

extraction. 

3. Dense  Layers  for  Classification:  Following  the 

LSTM layers, dense (fully connected) layers are 

introduced to perform classification tasks. These 

layers process the output from the LSTM layers 

and generate predictions based on learned features. 

Dropout   layers  are  used  for  regularization  to 

prevent over fitting. 
 
 

 
 
 
 

(f) 

 
 

 
(a) (b) (c) (d) (e) 

4. Sigmoid Activation for Multi-Label Classification: 

The final dense layer employs a sigmoid activation 

function, enabling the model to make multi-label 

predictions. Each unit in this layer corresponds to 

a specific class label, and the sigmoid activation 
Figure 3. Images of the Dead_Knot class after applying one 

level DWT (a) Original image (b) Converted Grayscale 

image (c) Approximation image (d) Horizontal detail image 

(e) Vertical detail image (f) Diagonal detail image. 

 
4.4.1 Interpretation and Applications 

The Haar wavelet coefficients obtained from the DWT are 

powerful tools for analyzing and processing images [23]. 

By analyzing the characteristics of these coefficients, one 

can gain insights into the image's various frequency 

components, details, and structures. These coefficients find 

applications   in   various  fields,   including  image 

compression, denoising, feature extraction, and image 

enhancement. Depending on the specific application, 

different combinations of these coefficients can be used to 

achieve the desired outcomes. 

 
4.5. Deep-Net (CNN-LSTM) model for classification 

When dealing with data sequences, convolutional neural 

networks (CNNs) and long short-term memory (LSTM) 

networks can be used to classify the data. A deep learning 

architecture called Deep-Net (CNN-LSTM) Model was 

created to analyze visual sequences and predict outcomes. It 

effectively  captures  both  spatial  and  temporal  elements 

within sequential image data by utilizing Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) layers. 

4.5.1 Architecture Overview: 

1. CNN Feature Extraction: The model's initial layers 

consist of 2D convolutional layers (Conv2D) with 

Rectified Linear Unit (ReLU) activation functions. 

These  layers  extract  spatial  features  from  each 

frame of the input sequence. Max-pooling layers 

are employed to downsample the features while 

preserving important information. 

 
2. LSTM Temporal Modeling: The output from the 

CNN layers is then fed into LSTM layers, which 

are specialized for capturing temporal patterns in 

sequential  data.  The  LSTM  layers  enable  the 

model to learn dependencies between frames over 

time. 

produces a binary output for each class. 

 
The figure 4  shows the created  Deep-Net  model for  the 

proposed experimentation. 
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Figure 4. Deep-Net model: CNN with LSTM model 
 

 
 
 

V.  EXPERIMENTAL RESULT 

The   experimental   setup   utilized   a   64-bit   version   of 

Windows 10, running on an Intel Core i3 processor clocked 

at 2.40GHz, coupled with 4GB of RAM. Python modules, 

including scikit-learn, matplotlib, and TensorFlow, were 

instrumental in constructing the model. 

5.1 Data interpretation and splitting the data 

The Figure 5  shows the images per  class in  the dataset 

which is used for the proposed study. 

 
 

 
Figure 5. Image distribution in each class 

 
Figure  5  represents  the  distribution  of  images  per  class 

within the dataset employed for this study. The following 

classes were included: 

 "Resin" 

 "Live_Knot" 

 "Knot_with_crack" 

 "Marrow" 

 "Crack" 

 "Dead_Knot" 

The graph visually depicts the distribution of images across 

these classes, providing insights into the dataset's class 

balance or imbalance. 

 
Figure 6 illustrates the dataset split into training and test 

sets following a 70:30 ratio. The graph represents the 

allocation of data for training and validation purposes. 

 

 

Figure 6. Training, testing ratio graph 

 
•  Test   Size:   0.3   indicates   a   30%  allocation   for   the 

validation set, leaving 70% for the training set. 

This  division  ensures  that  a  substantial  portion  of  the 

dataset is reserved for training the model while allowing a 
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Class Precision Recall f1-score 

Live_Knot 1.00 1.00 1.00 

Marrow 1.00 0.96 0.98 

Resin 0.95 1.00 0.97 

Dead_Knot 0.96 1.00 0.98 

Knot_with_crack 1.00 1.00 1.00 

 

 

 

sizable portion for validation to assess the model's 

performance without overfitting. 

The chosen split ratio of 70:30 strikes a balance between 

model training and validation, ensuring adequate data for 

both purposes. The division of data into training and test 

sets at a 70:30 ratio facilitates robust model development 

and evaluation. This allocation strategy enables the model 

to learn from a substantial amount of data while ensuring 

an independent validation subset for accurate performance 

assessment. 

5.2 Results and Discussion 

Section provides a summary of the numerical outcomes, 

trends observedand graphical representations during 

experiment. The Figures 7 and 8 reports the accuracy scores 

or relevant metrics obtained from each experimental 

configuration  from  the different  epoch  ranges from  0 to 

125. This provides a straightforward comparison of how the 

model's performance changed with varying epochs. 

 

 

Figure 7.  Accuracy of training and validation for different 

values of epochs 

 

 

Figure 8.  Loss of training and validation for different 

values of epochs 

 
The accuracy and loss of a Deep-Net model changeover the 

course of training and validation, as shown in figures 7 and 

8. It illustrates how accuracy typically increases and loss 

typically decreases as the model gains knowledge from the 

training data. This demonstrates how the model's accuracy 

and capacity for event prediction grow as it is taught. 

From  Figures  7  and  8,  it's  evident  that  the  experiment 

utilized an epoch value of 125. Throughout the epochs, a 

noticeable trend in accuracy is observed, steadily increasing 

from  0  up  to  the  100th  iteration.  However,  beyond  the 

100th iteration, the model's accuracy plateaus, remaining 

constant thereafter. 

Figure 9 specifically presents the accuracy trends for the 

final 20 epochs of the experiment, offering a closer 

examination of the model's performance during this 

concluding phase. 

 

 
 

Figure 9. Model training history of last 20 epochs 
 

Tables 3 and 4 furnish a detailed breakdown of the 

classification performance metrics for distinct classes in the 

model's predictions. These metrics encompass Precision, 

Recall,  and  F1-score,  providing  a  comprehensive 

assessment of the model's ability to differentiate between 

classes. 

A conclusion section must be included and should indicate 

clearly  the  advantages,  limitations,  and  possible 

applications  of  the  paper.    Although  a  conclusion  may 

review the main points of the paper, do not replicate the 

abstract as the conclusion. A conclusion might elaborate on 

the importance of the work or suggest applications and 

extensions. 

 
Table 3. Classification table for train set 
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Crack 1.00 0.95 0.91 In  Figures  10  and  11,  the  displayed  confusion  matrix 

   utilizes  the  "Normalized"  format,  presenting  values  as 

percentages or proportions. This format helps elucidate the 

Table 4: Classification table for test set distribution of prediction errors across various classes, even 

   in  the  presence  of  imbalanced  class  counts.  It  offers  a 

Class Precision Recall f1-score 
 

Live_Knot 1.00 1.00 1.00 
 

Marrow 1.00 1.00 1.00 
 

Resin 0.86 1.00 0.92 
 

Dead_Knot 1.00 1.00 1.00 
 

Knot_with_crack 1.00 1.00 1.00 
 

Crack 1.00 0.83 0.91 
 
 

From the Table 3 and 4 it is observed that the table provides 

a comprehensive overview of the classification metrics for 

each class in our model's predictions. The metrics include 

Precision, Recall, and F1-score. These metrics collectively 

illuminate   the   model's   performance   in   distinguishing 

between different classes. 

The model's overall performance appears to be strong, as 

indicated by the consistently high precision, recall, and F1- 

scores across various classes. However, the variation s in 

metrics for certain classes, such as "Marrow" and "Crack," 

suggests potential areas for improvement. 

 
The Table 5 below shows the model performance metrics of 

Deep-Net model for the proposed experiment. 

 
Table 5. Model Performance Metrics table for train & 

test set 
 

Model Performance Metrics Accuracy in % 

Train Accuracy 98.52 

Train Loss 04.52 

Test Accuracy 97.56 

Test Loss 06.77 
 
 

The Table 5 presents the model's performance metrics for 

both the training and testing sets. The training accuracy 

stands at 98.52%, signifying the model's correct prediction 

of nearly 98.52% of the training dataset. The associated 

training  loss  is  4.52,  indicating  minimal  error  or 

discrepancy in predictions during the training phase. 

On  the  other  hand,  the  model  achieved  an  accuracy of 

97.56% on the separate testing dataset, demonstrating its 

ability to accurately predict around 97.56% of the unseen 

test data. The corresponding test loss is 6.77%, suggesting a 

relatively low level of error in predictions on the unseen test 

data. 

In essence, these metrics highlight the model's strong 

performance on both the data it learned from and its ability 

to generalize well to new, unseen data, showcasing high 

accuracy and comparatively low error rates. 

clearer insight into how mistakes in predictions are 

distributed among different classes. 

On the other hand, the "Class Count" Confusion Matrix 

showcases values based on the actual count of instances 

within  each  class.  This  format  facilitates  a  direct 

comparison of performance across classes by explicitly 

illustrating the number of accurate and erroneous forecasts 

for each class. It provides a more tangible understanding of 

the accuracy and error distribution among different classes, 

enabling a direct comparison of the model's performance 

across diverse categories. 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Normalized (b) class count 

Figure 10. Confusion matrix for normalized and class 

count for training set 

 

 
 

(a) Normalized (b) class_count Figure 11. 

Confusion matrix for normalized and class count for 

test set 
 
Figures  10  and  11   exhibit  that  the  Deep-Net  model 

accurately predicts the classes selected for the experiment. 

The  model  demonstrates  proficiency  in  accurately 

identifying   and   classifying   these   specific   classes,   as 

indicated by the results depicted in the figures. 

Figure 12 provides a graphical representation of precision, 

recall,  and  F1  scores  for  various classes,  such  as 

"Live_Knot," "Marrow," "Resin," "Dead_Knot," 

"Knot_With_Crack," and "Crack." 

The precision score, depicting the accuracy of positive 

predictions, is graphically displayed for each class, 

illustrating the model's capability in correctly identifying 

instances of these classes. 
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Additionally, the graph showcases the recall score for each 

class, offering insights into the model's effectiveness in 

capturing positive occurrences accurately within each class. 

In essence, this graphical representation allows for a visual 

comparison of precision and recall scores across multiple 

classes, enabling a comprehensive understanding of the 

model's performance concerning these evaluation  metrics 

for each specific class. 

The graph displays the F1 score for each class, a statistic 

that balances recall and accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12. Precision, Recall, F1 score for classes of dataset. 

Overall,   the   findings   collectively   indicate   a   strong 

performance of the Deep-Net model in identifying wood 

defect classes. While demonstrating high accuracy and 

proficiency in most classes, the model's performance aligns 

well  with  or  surpasses  existing  state-of-the-art 

methodologies, affirming its efficacy in large-scale wood 

surface defect detection. 

 
Table 5. Comparison of classification accuracy on the 

wood surface defect detection dataset between the 

proposed method and state-of-the-art-work. 

 
Table 5 shows that the proposed experimental results with 

comparison of state-of-art work related to the dataset large 

scale wood surface defects detection [22]. 

 
From the table 5 it is observed that experimented model 

provide a greater categorization rate when evaluated using 

a cutting-edge methodology. The 98% accuracy is provided 

by Deep-Net model i.e. is by combining CNN and LSTM 

with DWT characteristics. 

 
VI.  CONCLUSION 

Within  this  study,  tackled  the  challenges  of  detecting 

defects in wood, with a primary focus on its applicability to 

automated wood surface defect detection. Our objective was 

to devise a cost-effective and robust algorithm that could 

seamlessly integrate into this machinery. To optimize 

affordability, we made the deliberate choice of utilizing 

grayscale-based  features  as  opposed  to  color-based  ones. 

The findings underscored the remarkable efficacy of 

proposed approach in recognizing wood defects. Notably, 

proposed method exhibited exceptional accuracy in defect 

recognition while maintaining commendable real-time 

performance. 

In the context of identifying six distinct types of wood 

defects, Convolutional neural networks (CNN) and long 

short-term  memory  (LSTM)  was  combined  and  created 

Deep-Net  model  which  delivered  an  impressive 

identification accuracy of 98% with DWT. This innovative 

fusion demonstrates its potential to serve as a powerful tool 

in significantly enhancing the detection of surface defects 

in solid wood surface. In future the proposed experiment 

can be continued with all 8 classes. And using the advanced 

pre processing techniques can classify more number of 

defects presented in wood surface. 
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