
Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 37

Detecting Hidden Attacks in Apps through the

Mobile App-Web Interface

Mrs.S.Revathy

Assistant Professor,Department of Computer Science and Engineering, Velammal Engineering College

 Chennai, Tamil Nadu

Ashvitha.V

Department of Computer Science and Engineering, Velammal Engineering College

Chennai, Tamil Nadu

Vaishnavi.N

Department of Computer Science and Engineering, Velammal Engineering College

Chennai, Tamil Nadu

--ABSTRACT--

Mobile users are increasingly becoming targets of malware infections and scams. Some platforms, such as

Android, are more open than others and are therefore easier to exploit than other platforms. In order to curb

such attacks it is important to know how these attacks originate. We take a previously unexplored step in this

direction and look for the answer at the interface between mobile apps and the Web. Numerous in-app

advertisements work at this interface: when the user taps on an advertisement, she is led to a web page which

may further redirect until the user reaches the final destination. Similarly, applications also embed web links that

again lead to the outside Web. Even though the original application may not be malicious, the Web destinations

that the user visits could play an important role in propagating attacks. In order to study such attacks we develop

a systematic methodology consisting of three components related to triggering web links and advertisements,

detecting malware and scam campaigns, and determining the provenance of such campaigns reaching the user.

We have realized this methodology through various techniques and contributions and have developed a robust,

integrated system capable of running continuously without human intervention. We deployed this system for a

two-month period and analyzed over 600,000 applications in the United States and in China while triggering a

total of about 1.5 million links in applications to the Web. We gain a general understanding of attacks through

the app-web interface as well as make several interesting findings, including a rogue antivirus scam, free iPadand

iPhone scams, and advertisements propagating SMS trojans disguised as fake movie players. In broader terms,

our system enables locating attacks and identifying the parties that intentionally or unintentionally let them reach

theend users and, thus, increasing accountability from these parties.

Keywords- Virus, Application Permissions, Redirect and Malicious URL

I. INTRODUCTION

Android is the predominant mobile operating system

with about 80% worldwide market share [1]. At the same

time, Android also tops among mobile operating system in

terms of malware infections [2]. Part of the reason for this

is the open nature of the Android ecosystem, which

permits users to install applications for unverified sources.

This means that users can install applications from third-

party app stores that go through no manual review or

integrity violation. This leads to easy propagation of

malware. In addition, industry researchers are reporting [3]

that some scams which traditionally target desktop users,

such as ransomware and phishing, are also gaining ground

on mobile devices. In order to curb Android malware and

scams, it is important to understand how attackers reach

users. While a significant amount of research effort has

been spent analyzing the malicious applications

themselves, an important, yet unexplored vector of

malware propagation is benign, legitimate applications

that lead users to websites hosting malicious applications.

We call this the app-web interface. In some cases this

occurs through web links embedded directly in

applications, but in other cases the malicious links are

visited via the landing pages of advertisements coming

from ad networks. A solution directed towards analyzing

and understanding this malware propagation vector will

have three components: triggering (or exploring) the

application UI and following any reachable web links;

detection of malicious content; and collecting provenance

information, i.e., how malicious content was reached.

There has been some related research in the context of the

Web, to study so-called malvertising or malicious

advertising [4], [5]. The context of the problem here is

however broader and the problem itself requires different

solutions to triggering and detection to deal with aspects

specific to mobile platforms (such as complicated UI and

trojans being the primary kinds of malware). In order to

better analyze and understand attacks through app-web

interfaces, we have developed an analysis framework to

explore web links reachable from an application and detect

any malicious activity. We dynamically analyze

applications by exercising their UI automatically and

visiting and recording any web links that are triggered. We

have used this framework to analyze 600,000 applications,

gathering about 1.5 million URLs, which we then further

analyzed using established URL blacklists and anti-virus

systems to identify malicious websites and applications

that are downloadable from such websites. Our

methodology enables us to explore the Web that is

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 38

reachable from within mobile applications, something that,

we believe, is not yet done by traditional search engines

and website blacklistsystems such as Google

Safebrowsing. We make the following contributions.

 We have developed a framework for analyzing the

appweb interfaces in Android applications. We

identify three features for a successful methodology:

triggering of the app-web interfaces, detection of

malicious content, and provenance to identify the

responsible parties. We incorporate appropriate

solutions for the above features and have

implemented a robust system to automatically analyze

app-web interfaces. The system is capable of

continuous operation with little human intervention.

 As part of our triggering app-web interfaces, we

developed a novel technique to interact with UI

widgets whose internals do not appear in the GUI

hierarchy. We develop a computer graphics-based

algorithm to find clickable elements inside such

widgets.

 In order to assist with determining the provenance of

identified malicious links, we conducted a systematic

study to associate ad networks with ad library

packages in existing applications. Our study reveals

201 ad networks and their associated ad library

packages. To the best of our knowledge, this is the

largest number of ad libraries identified.

 We deployed our system for a period of two months

in two continents, with one location in Northwestern

University campus and the other in Zhejiang

University campus. We studied over 600,000

applications from Google Play and four Chinese

stores for a period of two months and identified

hundreds of malicious files and other scam

campaigns. We present a number of interesting

findings and case studies in an attempt to characterize

the malware and scam landscape that can be found at

the app-web interface. As some examples, we have

found rogue ad networks propagating rogue

applications; scams enticing users by claiming to give

away free products propagating through both in-app

advertisements and links embedded in applications;

and SMS trojans propagating through well-known ad

networks.

II. LITERATURE SURVEY

Mobile users are increasingly becoming targets of

malware infections and scams. Some platforms, such as

Android, are more open than others and are therefore

easier to exploit than other platforms. In order to curb such

attacks it is important to know how these attacks originate.

We take a previously unexplored step in this direction and

look for the answer at theinterface between mobile apps

and the Web. Numerous inapp advertisements work at this

interface: when the user taps on an advertisement, she is

led to a web page which may further redirect until the user

reaches the final destination. Similarly, applications also

embed weblinks that again lead to the outside Web. Even

though the original application may not be malicious, the

Web destinations that the user visits could play an

importantrole in propagating attacks.

In order to study such attacks we develop a systematic

methodology consisting of three components related to

triggering web links and advertisements, detecting

malware and scam campaigns, and determining the

provenance of such campaigns reaching the user. We have

realized this methodology through various techniques and

contributions and have developed a robust, integrated

system capable of running continuously without human

intervention. We deployed this system for a two-month

period and analyzed over 600,000 applications in the

United States and in China while triggering a total of

about 1.5 million links in applications to the Web. We

gain a general understanding of attacks through the app-

web interface as well as make several interesting findings,

including a rogue antivirus scam, free iPad and iPhone

scams, and advertisements propagating SMS trojans

disguised as fake movie players. In broader terms, our

system enables locating attacks and identifying the parties

(such as specific ad networks, websites, and applications)

that intentionally or unintentionally let them reach the end

users and,thus, increasing accountability from these

parties.

III. METHODOLOGY

Our methodology for analyzing app-web interfaces will

involve the following three conceptual components: •
Triggering. This involves interacting with the application

to launch web links, which may be statically embedded in

the application code or may be dynamically generated

(such as those in the case of advertisements). • Detection.
This includes the various processes to discriminate

between malicious and benign activities that may occur as

a result of triggering. • Provenance. This is about
understanding the cause or origin of a detected malicious

activity, and attributing events to specific entities or

parties. Once a malicious activity is detected, this

component provides the information required in order to

hold the responsible parties accountable. Different

processes and techniques may be plugged-in to these

different components almost independently of what goes

into the other components. The rest of this section

elaborates on these three components, describing the

various processes we incorporate into each of them.

3.1. Triggering App-Web interfaces

Recall from previous discussion that web links in

applications are often dynamically generated (such as from

advertisements). Thus a static approach of extracting web

links is not sufficient. Therefore, in order to trigger web

links from within the application, we run the applications

in a custom dyanamic analysis environment. To enable

scalability andcontinuous operation, running applications

on real devices is not a feasible option. Therefore, each

application is run in a virtual machine based on the

Android emulator. The applications we are interested in

are primarily GUI oriented and therefore we need to

navigate through the GUIautomatically to trigger app-web

interfaces. The rest of this subsection describes

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 39

thetechniques thatwe leverage from past research in order

to accomplish this, as well as some new techniques

designed to overcome issues specific to the app-web

interface.

 Application UI Exploration: Application user

interface (UI) exploration is necessary to trigger app-

web interfaces. Researchers have come up with a

number of systems for effective UI exploration

catering to varied applications and incorporating

different techniques (Section VIII). An effective UI

explorer will offer high coverage (of the UI, which

may also translates to code coverage) while avoiding

redundant exploration. For our work, we used the

heuristics and algorithms that we had developed

earlier in AppsPlayground [6].

 We briefly describe these next. UI exploration

generally involves extracting features (the widget

hierarchy) from the displayed UI and iteratively

constructing a model or a state machine of the

application’s UI organization, i.e., how different

windows and widgets are connected together. A

black-box (or grey-box) technique, such as

AppsPlayground, may apply heuristics to identify

which windows and widgets are identical to prevent

redundant exploration of these elements. Window

equivalence is determined by the activity class name

(an activity is a code-level artifact in Android that

describes one screen or window). Widget equivalence

is determined by various features such as any

associated text, the position of the widget on the

screen, and the position in the UI hierarchy. In order

to prevent long, redundant exploration, thresholds are

used to prune the model search.

 Handling Webviews: While studying advertisements,

we faced a significant challenge: most of the in-app

advertisements are implemented as customizations of

Webviews (these are special widgets that render Web

content, i.e., HTML, JavaScript, and CSS). Webviews

and some custom widgets are opaque in the UI

hierarchy obtained from the system, i.e., the UI

rendered inside them cannot be observed in the native

UI hierarchy and thus interaction with them will be

limited. To the best of our knowledge, previous

research has not proposed a satisfactory solution to

this problem. Certain open source projects, such as

Selendroid [7], may be used to obtain some

information about the internals of the Webview. We

developed code around Selendroid to interact with

Webviews. However, our experience was that it is

difficult to use the information provided from

Webviews to trigger advertisements. Advertisements

often include specific buttons (actually decorated

links) that should be clicked to trigger the ads. They

may also present other features such as those relating

to users’ preferences, but which are irrelevant for our

purposes. The relevant links cannot easily be

distinguished from the irrelevant ones. Often times the

click-able link is represented by images instead of

text. If we click the irrelevant links, ads may not get

triggered, resulting in low click-through rates.In order

to overcome this issue of essentially flat (i.e., with no

hierarchical structure in the UI debug interfaces

provided by Android) Webviews, we apply computer

graphics techniques in order to detect buttons and

widgets as a human would see them. Algorithm 1

presents the detection algorithm.

3.2. Algorithm 1Button detection algorithm

 Perform edge detection on the view’s image

 Find contours in the image

 Ignore the non-convex contours or those with very

small area

 Compute the bounding boxes of all remaining

contours.

The first step, edge detection, is the technique of

identifying sharp changes in an image. Fundamentally, it

works by detecting discontinuities in image brightness.

We specifically use the Canny edge detection algorithm, a

classical, yet generally wellperforming edge detection

algorithm. In the second step we compute contours of

images, using the computed edges, to obtain object

boundaries. Since buttons typically have a convex shape

and a large enough area so that a user can easily tap on

them, we ignore non-convex contours and those with a

small area within a threshold parameter. Numerous

contours such as those arising out of text or the non-

convex or open contours in embedded images are

eliminated in this step. For the remaining contours, we

compute the bounding boxes, or the smallest rectangles

that would contain those contours. This step is simply to

identify a central point where a tap can be made to

simulate a button click. The resulting bounding boxes

signify the buttons that would be visible to a human being.

We have not performed a thorough evaluation of the

accuracy of our technique but the results are good in the

cases we have examined.

3.3. Detection

 As the links are triggered, they may be saved for further

analysis and detection of malicious activity such as

spreading malware or scam. We would like to capture the

links, their redirection chains, and their landing pages. The

links, redirection chains, and the content of the landing

pages may then be further analyzed using various

methods.

3.3.1. Redirection chains

Advertisements redirect from one link to another until they

finally arrive at the landing page. As discussed earlier, the

redirection may be a result of ad syndication and auction

or may even be performed within an ad network itself or

by the advertisers themselves. An example redirection

chain of length five is shown in Figure 3. Redirection

chains may also be observed in non-ad links. Redirection

may be performed using several techniques, including

HTTP 301/302 status headers, HTML meta tags, and at the

JavaScript level. Furthermore, we found that certain ad

networks such as Google ads apparently use time-based

checks in order to reduce possibility of click fraud. The

result of this is that the links must be launched in real-time

to obtain redirection messages. In order to ensure that our

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 40

approach accurately follows the redirection chain

regardless of the redirection technique used, we use an

instrumented web browser to follow the chain, just as a

real user would. We implemented a custom browser that

runs inside the virtualized execution environment so that

the ads are loaded completely realistically inside the

browser allowing full capture of the redirection chains.

Our browser implementation is based on the Webview

provided in Android. With Javascript enabled and a few

other options tweaked, it behaves completely like a web

browser. We additionally hook onto the relevant parts to

log every URL (including redirected ones) that is loaded in

it while freely allowing any redirections to occur.

3.3.2. Landing pages

Landing pages, or the final URLs in redirection chains, in

Android may contain links that may lead to application

downloads. Malicious landing pages may lure the users

into downloading trojan applications. We load the landing

pages in a browser configured with a realistic user agent

and window size corresponding to a mobile device, so that

the browser appears to be the Chrome browser on

Android. We then collect all links from the landing page

and click each to see if any files are downloaded.

Simulating clicks on pages loaded in a browser ensures

that links are found and clicked properly in the presence of

Javascript-based events. The downloaded files are

analyzed further as below.

3.3.3. File and URL scanning

The collected URLs and files may be analyzed in various

ways for maliciousness. In this paper, rather than

developing our own analysis, we used results from URL

blacklists and antiviruses from VirusTotal. VirusTotal

aggregates results from over 50 blacklists and a similar

number of antiviruses. Each URL collected, either the

landing page or any other URL involved in the redirection

chain, is scanned through URL blacklists provided by

VirusTotal. This includes blacklists such as Google

Safebrowsing, Websense Threatseeker, PhishTank, and

others. Files that are collected as a result of downloads

from the landing pages are scanned through the antiviruses

provided on VirusTotal. Antivirus systems and blacklists

are known to have false positives. In order to minimize the

impact of this, we use agreement among antiviruses to

reduce the false positive rate: we say a URL or a file is

malicious only if it is flagged by at least three different

blacklists or antiviruses.

3.3.4. Provenance

Once a malicious event is detected, it is necessary to make

the right attributions to the parties involved so that these

parties can be held responsible and proper action may be

taken. In our system, we use two aspects as part of

provenance.

Redirection chain:.The redirection chain, which is already

captured as part of the detection component. The

redirection chain can be used to identify how the final

landing page was reached: if the landing page contains

something malicious, the parties owning the URLs leading

up to the landing URL can be identified.

Code-level elements: The application itself may include

code from multiple parties such as the primary application

developer as well as ad libraries from a variety of ad

networks. In order to launch one application from another,

Android uses what are called intents. URLs may be

opened by applications in the system’s web browser by

submitting intents to the system with specific parameters.

We modify the system to log specific intents that are

indicative of URL launches together with which part of the

code (the Java class within which the launching code lies)

that submitted the intent. This allows us to determine

which code with an application launched the malicious

URL. It is important to identify the owners of the code

classes captured as part of provenance: do they belong to

the application 5 developer or an ad library, and if they

belong to an ad library, which one is it? In order to assist

us in doing this, we therefore perform the one-time task of

identifying prevalent ad libraries and their associated ad

networks.

3.4. Ad Library Identification

Applications that monetize with advertisements typically

partner with ad networks and embed code called ad

libraries from them in order to display and manage

advertisements. Our goal is to comprehensively identify ad

networks that participate in the Android ecosystem and

their associated ad libraries. Such an identification is

important for automatically classifying if a malicious

activity is a result of an advertisement or is the

responsibility of the application developer. Some simple

domain knowledge, such as which ad networks are there in

the market, may not provide a comprehensive list we are

looking for. We instead resorted to two systematic

approaches to do this identification based on the ad

libraries embedded in the code.

3.4.1. Approach1

We exploit the fact that one ad network will likely be used

by many applications and thus common ad library code

will be found in all applications using an ad network. The

native programmingplatform for Android applications is

Java and Java packages provide mechanisms to organize

related code innamespaces. Ad libraries themselves have

packages that can serve as their identifying signatures. In

our first approach, we collected packages from all

applications in our dataset and created a package hierarchy

together with the frequency of occurrence of each

package. We sorted the packages and then manually

searched the most frequent packages to identify ad

libraries. For example, after sorting, packages such as

com.facebook and com.google.ads appear at the top. Then

we identified the nature of each package, i.e., whether it

constituted an ad library, based on either prior knowledge

or manually searching information about that package on

the Web.

3.4.2. Approach 2

The previous approach became cumbersome when we

reached frequencies of a few hundred because many non-

ad packages also had such frequencies. Our alternative

approach allows for comprehensive identification of ad

libraries without depending on the frequency of

occurrence of those ad libraries. Our second approach

relies on the fact that the main application functionality is

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 41

only loosely coupled with the functionality of ad libraries.

Thus, we use the technique described by Zhou et al. [8] to

detect loosely coupled components in the applications.

The coupling is actually measured in terms of

characteristics such as field references, method references,

and class inheritances across classes. Ideally, all the

packages of one ad library will be grouped into one

component. In reality, this does not always happen and it

may also happen that classes that should have been in

different components end up in the same components.

However, the errors are tolerable and can be manually

analyzed. The manual analysis is further eased by

employing a clustering technique described as follows. We

create a set of Android APIs called in an application

component. This set of APIs forms a signature for the

component. We map these APIs to integers to enable

efficient set computations. Based on this, ad library

instances with the same version have matchingAPI sets.

For different versions, the sets will be similar but not

identical. We run this analysis on components extracted

from all applications and then use the Jaccard distance to

compute dissimilarity between API sets. If it is below a

certain threshold (we used 0.2), we place the components

in the same cluster. Thus packages of different ad libraries

end up in different clusters, and then clusters can be easily

mapped to ad libraries.

3.4.3. Results

Using the two approaches, we were able to identify 201 ad

networks in our dataset. To our knowledge, this is the

highest number of ad networks identified. Some ad

networks have ad libraries withseveral package names. For

example,com.vpon.adon and com.vpadn belong tothe

same network. We combine such instances together to be

represented as a single ad network. More notably,

Google’s Admob and DoubleClick platforms are both

represented as Google ads.

Note that our approach to use package names to identify

ad libraries is contingent upon the assumption that ad

library packages are not obfuscated. This is true for most

cases that we know of: the top-level packages work quite

well to identify most ad libraries. However, Airpush is one

known ad network that obfuscates its ad libraries such that

they are no longer identifiable with package names [9].

While applying our second approach, which is immune to

lexicographic obfuscations, we also detected obfuscated

Airpush packages, all ending up in a few clusters. The

clusters have the non-obfuscated package

com.airpush.android as well as obfuscated ones

likecom.cRDpXgdA.kHmZYqsQ70374and

com.enVVWAar.CJxTGNEL99769.

IV. PROPOSED SOLUTION

We implemented most of our system in Python. For UI

exploration, we make use of the source code of the

AppsPlayground tool [10]. However, the existing version

of the tool is unable to run on current versions of Android,

and we therefore reimplemented the system to work on

current Android versions with the same heuristics as are

described in the AppsPlayground paper. Furthermore,

instead of using HiearchyViewer for getting the current UI

hierarchy of the application, we used UIAutomator, which

is based on the accessibility service of Android. This had a

significant and positive effect on the speed of execution.

The graphics algorithms used for button detection were

provided by the OpenCV library and appropriate

thresholds were chosen after repeated testing. To improve

speed of dynamic analysis, we take advantage of KVM-

accelerated virtualization. To use this, we use Android

images that can run on the x86 architecture.About 70%

Android applications have no native code and so can run

without problem on such targets. Other applications

contain ARM native code and cannot run on x86

architecture without proprietary library support. We

therefore excluded applications containing native code.

Despite this we believe the study results are generally

representative. Furthermore, not being able torun ARM

native code is not a fundamental limitation of our

approach: thirdparty Android emulators, e.g., Genymotion,

or the use of a dynamic ARM-to-x86code translation

library(libhoudini) can allow runningARM code on

hardware-accelerated x86 architectures [11], [12].For post-

trigger analysis, our entire framework is managed through

Celery [13], which provides job management with the

ability to deploy in a distributed setting.Once this stage is

completed, any recorded redirection chains are queued

through a REST API into the Celery-managed queue

together with information about the application and part of

the code that was responsible for the triggering of the

intent that led to the redirection chain. Tasks are pulled

from the queue to perform further analysis on the landing

pages and scan the files and URLs with VirusTotal as

described above. The whole system has proper retry and

timeout mechanisms in place and could run for multiple

months without significant need of human attention. All

the resulting analysis data is stored in MySQL and

MongoDB databases. Since the framework works in a

distributed, concurrent manner, server-based SQL engines

such as MySQL were more appropriate than serverless

implementations like SQLite. SQL commands are

additionally wrapped with SQLAlchemy, a library that

provides object-relational mapping (ORM), generally

easing the programming. We implemented the analysis of

the landing pages or the final URLs in the redirection

chains on top of Chromium web browser using Watir and

the Selenium Webdriver framework. We use Watir and

Webdriver to scriptbrowser actions for automatically

loading web pages, clicking on links, automatically

download content that is available on clicking links, as

well as going back to the original page if a new page loads

after clicking on links. All the processing is done

headlessly (i.e., without any GUI) using the Xvfb display

server, which is an X server implementation that does not

present a screen output. Applications are run in the

virtualized environment for a maximum of five minutes,

with the average running time less than two minutes. The

post-trigger analysis, especially the analysis of landing

pages, is allowed to run for a maximum of fifteen minutes.

We allow for such a long time as our crawler may traverse

many links and each link may have complex redirection

mechanisms that may trigger only after a short wait. A

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 42

systematic static analysis methodology to find ad libraries

embedded in applications and dynamic analysis

methodology consisting of three components related to

triggering web links, detecting malware and scan

campaigns, and determining the provenance of such

campaigns reaching the user.

V. EVALUATION AND RESULTS

5.1. Application Collection

Our application dataset consists of 492,534 applications

from Google Play and 422,505 applications from four

Chinese Androidapplication stores: 91, Anzhi, AppChina,

and Mumayi. Google Play has a proprietary API for

searching and downloading applications from the store and

it further requires Google account credentials to do these

tasks. We used PlayDrone, which is an open source project

to crawl Google Play [14]. Google implements rate

limiting based on Google accounts and IP addresses and

bans accounts and IP addresses if there are two many

requests in a given period of time. PlayDrone mitigates

this problem by seamlessly allowing the use of multiple

Google accounts and deploying the crawler over multiple

machines in a distributed manner. We used the multiple

Google accounts feature but simplified the system by

using a single machine and setting multiple IP addresses

for that machine. In our deployment, every new

connection toGoogle’s servers randomly chooses from

among twenty source IP addresses. To crawl applications

from Chinese application stores, we used our own in-

house tool. These third-party stores have a much simpler

API than Google Play and typically have a public

http/https URL associated with each application. While

there can be sophisticated ways to search for each

application, the technique we employed was based on the

observation that applications in all these stores have

identifiers in a small integer range. Requesting URLs

constructed for each possible identifier sufficed to

completely scrap these applications stores. After removing

applications that were redundant among these stores, the

total number amounts to 422,505. About 30% applications

have native code and due to implementation reasons

mentioned in Section IV cannot be tested on our system.

Our entire usable application dataset therefore consists of

a little over 600,000 applications.

5.2. Deployment

We deployed our system to gather results over a period

of about two months from mid-April 2015 to mid-June

2015 in two locations, one at Northwestern University

campus in the US and the other at Zhejian University

campus in China. The deployment ran continuously with

little manual intervention, and restarts were necessary only

when we needed to update the system for fixing bugs or

adding features. To have a realistic setting, the

Northwestern University location ran applications from

Google Play (only the applications available from theUS)

while the Chinese university location ran applications

from Chinese application stores. The location where the

apps are run is important because much of advertising,

which forms bulk of theapp-web interaction we are

studying, is targeted based on location. Theadvertisements

that are seen in one locationmay not be shown in another

location.

5.3. Overall Findings

Overall, we recorded a total of slightly over 1 million

launches of app-to-web links in the US deployment. In the

Chinese deployment, this number was 415,000. Note that

this is not a direct correspondence with the applications:

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 43

some applications may result in more than one launch

while others may not result in any. In the US, we detected

a total of 948 malicious URLs coming from 64 unique

domains. For the Chinese deployment we detected 1,475

malicious URLs that came from 139 unique domains. We

also downloaded several thousands of filesof which many

were simple text files or docx files. As for the number of

Android applications, the US deployment collected 468

unique applications (from the Web,outside Google Play)

of which 271 were found to be malicious. Alarge chunk

(244)of these malicious applications comes from the

antivirus scam reported in Section VI-A. Excluding this

anomalous number of 244, we find that one in six

applicationsdownloaded from the Web (outside Google

Play) are malicious. The file numbers above do not

include the applications applications hosted on Google

Play. We accounted for suchseparately: there were

433,000 landing Google Play landing URLs, i.e., http

URLs with play.google.com domain or URLs with market

scheme (beginning with “market://”). These Google Play

landing URLs led to a little over 19,000 applications on

Google Play. About 5% of these labels arelabeled as

malicious (based on our criterion of being flaggedby at

least 3 antiviruses) on VirusTotal. Based on our manual

check of the antiviruslabels,however, all of these appear to

beadware. On theChinese deployment side, we collected

1,097 unique files of which 435 are malicious. 102 of

these files are from the antivirus scam of Section VI-A.

Figures 4 and 5 present the distribution of malware

downloads through various ad libraries in the US

deployment and in the Chinese deployment respectively.

The “others” bar presents the downloads through web

links not embedded in advertisements. Both the higher

diversity and higher number of malicious downloads in the

Chinese deployment are noteworthy. This is likely because

the North American Android ecosystem is centered around

Google Play and application downloads outside it are rare.

However, the Chinese ecosystem depends much more on

the Web and third-party Android applicationstores.

We also plot the length of redirection chains in both North

American and Chinese Deployments. Note as the length of

the chains increases, the two curves come closer, i.e., we

have a greater fraction of malicious chains when they are

longer. This was also observed by [5] and can possibly

used to enhance our detection in future work.

VI. CONCLUSION

In order to curb malware and scam attacks on mobile

platforms it is important to understand how they reach the

user. In this paper, we explored the app-web interface,

whereina user may go from an application to a Web

destination via advertisements or web links embedded in

the application. We used our implemented system for a

period of two months to study over 600,000 applications

in two continents and identified several malware and scam

campaigns propagating through both advertisements and

web links in applications. With the provenance gathered, it

was possible to identify the responsible parties (such as ad

networks and application developers). Our study shows

that should such as system be deployed, the users can be

offered better protection on the Android ecosystem by

screening out offending applications that embed links

leading to malicious content as well as by making ad

networks more accountable for their ad content.

REFERENCES

[1] “Smartphone os market share, q1 2015,”

http://www.idc.com/prodserv/ smartphone-os-market-

share.jsp.

[2] “Malware infected as many androiddevices as

windows laptops in 2014,”

http://bgr.com/2015/02/17/android-vs-windows-

malware-infection/.

[3] “Android phones hit by ‘ransomware’,”

http://bits.blogs.nytimes.com/ 2014/08/22/android-

phones-hit-by-ransomware/? r=0.

[4] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C.

Kruegel, and G. Vigna, “The dark alleys of madison

avenue: Understanding malicious advertisements,” in

Proceedings of the 2014 Conference on Internet

Measurement Conference. ACM, 2014, pp. 373–380.

[5] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang,

“Knowing your enemy: understanding and detecting

malicious web advertising,” in Proceedings of the

2012 ACM conference on Computer and

Communications Security. ACM, 2012, pp. 674–686.

[6] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground:

Automatic Security Analysis of Smartphone

Applications,” in Proceedings of ACM CODASPY,

2013.

[7] “Selendroid: Selenium for android,”

http://selendroid.io/.

[8] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou,

“Fast, scalable detection of piggybacked mobile

applications,” in Proceedings of the third ACM

conference on Data and application security and

privacy. ACM, 2013, pp. 185–196.[9] Symantec,

“Airpush begins obfuscating ad modules,” November

2012, http://www.symantec.com/connect/blogs/

airpush-begins-obfuscating-ad-modules.

[9] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground:

automatic security analysis of smartphone

applications,” in Proceedings of the third ACM

conference on Data and application security and

privacy. ACM, 2013, pp. 209–220.

http://bgr.com/2015/02/17/android-vs-windows-malware-infection/
http://bgr.com/2015/02/17/android-vs-windows-malware-infection/
http://selendroid.io/

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 44

[10] “Genymotion,” https://www.genymotion.com/.

[11] “Android-x86 running arm apps thanks to libhoudini

and buildroid.org,” 2012, http://forum.xda-

developers.com/showthread.php?t=1750783. [13]

“Celery: Distributed task queue,”

http://www.celeryproject.org/.

[12] N. Viennot, E. Garcia, and J. Nieh, “A measurement

study of google play,” in The 2014 ACM international

conference on Measurement and modeling of

computer systems. ACM, 2014, pp. 221–233.

[13] http://forums.makingmoneywithandroid.com/advertisi

ng-networks/ 1868-tapcontext-shit-breaking-policy-

making-loosing-active-users. html#post12949

[14] http://www.androidauthority.com/armor-for-

android-342192/.

[15] “Reputation of amarktflow.com,”

https://www.mywot.com/en/scorecard/

amarktflow.com.

[16] “Free iPad mini scam spreads via facebook rogue

application,” https:

//nakedsecurity.sophos.com/2012/10/31/free-ipad-

mini-facebook/.

[17] “Apple iPad scam,”

http://blog.spamfighter.com/software/ apple-ipad-

scam.html.

[18] “How to spot a ‘free iPhone or iPad’ scam: Why ’free

iPhone’ and ’free iPad’ stories are always bogus, and

how to avoid getting ripped off,”

http://www.macworld.co.uk/feature/iphone/ free-

iphone-ipad-scam-fake-auction-site-facebook-

3608522/.

[19] T. Azim and I. Neamtiu, “Targeted and depth-first

exploration for systematic testing of android apps,”

ACM SIGPLAN Notices, vol. 48, no. 10, pp. 641–
660, 2013.

[20] W. Choi, G. Necula, and K. Sen, “Guided gui testing

of android apps with minimal restart and approximate

learning,” in ACM SIGPLAN Notices, vol. 48, no. 10.

ACM, 2013, pp. 623–640.

[21] B. Liu, S. Nath, R. Govindan, and J. Liu, “Decaf:

detecting and characterizing ad fraud in mobile apps,”

in Proc. of NSDI, 2014.

[22] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and

L. Khan, “Smvhunter: Large scale, automated

detection of ssl/tls man-in-the-middle vulnerabilities

in android apps,” in Proceedings of Network and

Distributed Systems Security (NDSS), 2014.

[23] L. Ravindranath, S. Nath, J. Padhye, and H.

Balakrishnan, “Automatic and scalable fault detection

for mobile applications,” in Proceedings of the 12th

annual international conference on Mobile systems,

applications, and services. ACM, 2014, pp. 190–203.

[24] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J.

Jung, S. Nath, R. Wang, and D. Wetherall,

“Brahmastra: Driving apps to test the security of

third-party components,” in 23rd USENIX Security

Symposium (USENIX Security 14). USENIX

Association, 2014, pp. 1021–1036.

[25] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R.

Govindan, “Puma: Programmable ui-automation for

large-scale dynamic analysis of mobile apps,” in

Proceedings of the 12th annual international

conference on Mobile systems, applications, and

services. ACM, 2014, pp. 204–217.

[26] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X.

S. Wang, “Appintent: Analyzing sensitive data

transmission in android for privacy leakage

detection,” in ACM CCS, 2013. [29] M. Xia, L.

Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time

android application auditing,” in IEEE Security and

Privacy, 2015. [30] J. Crussell, R. Stevens, and H.

Chen, “Madfraud: Investigating ad fraud in android

applications,” inProceedings of the 12thannual

international conference on Mobile systems,

applications, and services. ACM, 2014, pp. 123–134.

[27] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P.

McDaniel, and A. Sheth, “Taintdroid: An

information-flow tracking system for realtime privacy

monitoring on smartphones,” in OSDI, 2010.

[28] P. Hornyack, S. Han, J. Jung, S. Schechter, and D.

Wetherall, “These aren’t the droids you’re looking

for: retrofitting android to protect data from imperious

applications,” in Proceedings of ACM CCS, 2011.

[29] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri,

“A study of android application security,” in USENIX

Security, 2011.

[30] C. Gibler, J. Crussell, J. Erickson, and H. Chen,

“Androidleaks: Automatically detecting potential

privacy leaks in android applications on a large

scale,” Trust and Trustworthy Computing, 2012.

[31] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi,

“Unsafe exposure analysis of mobile in-app

advertisements,” in Proceedings of the fifth ACM

conference on Security and Privacy in Wireless and

Mobile Networks. ACM, 2012, pp. 101–112.

[32] Y. Zhang, D. Song, H. Xue, and T. Wei, “Ad vulna: A

vulnaggressive (vulnerable & aggressive) adware

threatening millions,” 2013,

https://www.fireeye.com/blog/threat-

research/2013/10/ ad-vulna-a-vulnaggressive-

vulnerable-aggressive-adware-threatening-millions.

html.

[33] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit:

Separating smartphone advertising from

applications.” in USENIX Security Symposium, 2012,

pp. 553–567.

[34] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.

Wallach, “Quire:Lightweight provenance for smart

phone operating systems.” in USENIX Security

Symposium, 2011, p. 24.

[35] H. Lockheimer, “Android and security,” February

2012, http://

googlemobile.blogspot.com/2012/02/android-and-

security.html.

[36] “Protect against harmful apps,”

https://support.google.com/accounts/

answer/2812853?hl=en.

[37] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck,

and J. Hoffmann, “Mobile-sandbox: having a deeper

look into android applications,” in Proceedings of the

https://www.genymotion.com/
http://www.celeryproject.org/
http://www.androidauthority.com/armor-for-android-342192/
http://www.androidauthority.com/armor-for-android-342192/

Special Issue Published in Int. Jnl. Of Advanced Networking & Applications (IJANA)

Page 45

28th Annual ACM Symposium on Applied

Computing. ACM, 2013, pp. 1808–1815.

[38] M. Lindorfer, M. Neugschwandtner, L.

Weichselbaum, Y. Fratantonio, V. van der Veen, and

C. Platzer, “Andrubis-1,000,000 apps later: A view on

current androidmalware behaviors,” in Proceedings of

the the 3rd International Workshop on

BuildingAnalysis Datasets and Gathering Experience

Returns for Security (BADGERS), 2014.

[39] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C.

Verbowski, S. Chen, and S. King, “Automated web

patrol with strider honeymonkeys,” in Proceedings of

the 2006 Network and Distributed System Security

Symposium, 2006, pp. 35–49.

[40] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you,

get off of my market: Detecting malicious apps in

official and alternative android markets,” in

Proceedings of the 19th Network and Distributed

System Security Symposium, ser. NDSS ’12, 2012.

[41] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,

“Riskranker: scalable and accurate zero-day android

malware detection,” in Proceedings of the 10th

international conference on Mobile systems,

applications, and services, ser. MobiSys ’12. ACM,

2012.[46] D. Arp, M. Spreitzenbarth, M. Hubner, H.

Gascon, and K. Rieck, “Drebin: ¨ Effective and

explainable detection of android malware in your

pocket,” in Proceedings of the Annual Symposium on

Network and Distributed System Security (NDSS),

2014.

[42] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning,

X. S. Wang, and B. Zang, “Vetting undesirable

behaviors in android apps with permission use

analysis,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security.

ACM, 2013, pp. 611–622.

[43] Y. Feng, S. Anand, I. Dillig, and A. Aiken,

“Apposcopy: Semantics-based detection of android

malware through static analysis,” in Proceedings of

the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, 2014,

pp. 576–587.

[44] M. Zhang, Y. Duan, H. Yin, and Z. Zhao,

“Semantics-aware android malware classification

using weighted contextual api dependency graphs,” in

Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security. ACM,

2014, pp. 1105–1116.

[45] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon:

evaluating android anti-malware against

transformation attacks,” in Proceedings of the 8th

ACM SIGSAC symposium on Information, computer

and communications security. ACM, 2013, pp. 329–
334.

	I. Introduction
	II. Literature Survey
	III. Methodology
	3.1. Triggering App-Web interfaces
	3.2. Algorithm 1Button detection algorithm
	3.3. Detection
	3.4. Ad Library Identification

	IV. Proposed Solution
	V. Evaluation and Results
	5.1. Application Collection
	5.2. Deployment
	5.3. Overall Findings

	VI. Conclusion
	References

