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--------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 

Mobile users are increasingly becoming targets of malware infections and scams. Some platforms, such as 

Android, are more open than others and are therefore easier to exploit than other platforms. In order to curb 

such attacks it is important to know how these attacks originate. We take a previously unexplored step in this 

direction and look for the answer at the interface between mobile apps and the Web. Numerous in-app 

advertisements work at this interface: when the user taps on an advertisement, she is led to a web page which 

may further redirect until the user reaches the final destination. Similarly, applications also embed web links that 

again lead to the outside Web. Even though the original application may not be malicious, the Web destinations 

that the user visits could play an important role in propagating attacks. In order to study such attacks we develop 

a systematic methodology consisting of three components related to triggering web links and advertisements, 

detecting malware and scam campaigns, and determining the provenance of such campaigns reaching the user. 

We have realized this methodology through various techniques and contributions and have developed a robust, 

integrated system capable of running continuously without human intervention. We deployed this system for a 

two-month period and analyzed over 600,000 applications in the United States and in China while triggering a 

total of about 1.5 million links in applications to the Web. We gain a general understanding of attacks through 

the app-web interface as well as make several interesting findings, including a rogue antivirus scam, free iPadand 

iPhone scams, and advertisements propagating SMS trojans disguised as fake movie players. In broader terms, 

our system enables locating attacks and identifying the parties that intentionally or unintentionally let them reach 

theend users and, thus, increasing accountability from these parties. 
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I. INTRODUCTION 

Android is the predominant mobile operating system 

with about 80% worldwide market share [1]. At the same 

time, Android also tops among mobile operating system in 

terms of malware infections [2]. Part of the reason for this 

is the open nature of the Android ecosystem, which 

permits users to install applications for unverified sources. 

This means that users can install applications from third-

party app stores that go through no manual review or 

integrity violation. This leads to easy propagation of 

malware. In addition, industry researchers are reporting [3] 

that some scams which traditionally target desktop users, 

such as ransomware and phishing, are also gaining ground 

on mobile devices. In order to curb Android malware and 

scams, it is important to understand how attackers reach 

users. While a significant amount of research effort has 

been spent analyzing the malicious applications 

themselves, an important, yet unexplored vector of 

malware propagation is benign, legitimate applications 

that lead users to websites hosting malicious applications. 

We call this the app-web interface. In some cases this 

occurs through web links embedded directly in 

applications, but in other cases the malicious links are 

visited via the landing pages of advertisements coming 

from ad networks. A solution directed towards analyzing 

and understanding this malware propagation vector will 

have three components: triggering (or exploring) the 

application UI and following any reachable web links; 

detection of malicious content; and collecting provenance 

information, i.e., how malicious content was reached. 

There has been some related research in the context of the 

Web, to study so-called malvertising or malicious 

advertising [4], [5]. The context of the problem here is 

however broader and the problem itself requires different 

solutions to triggering and detection to deal with aspects 

specific to mobile platforms (such as complicated UI and 

trojans being the primary kinds of malware). In order to 

better analyze and understand attacks through app-web 

interfaces, we have developed an analysis framework to 

explore web links reachable from an application and detect 

any malicious activity. We dynamically analyze 

applications by exercising their UI automatically and 

visiting and recording any web links that are triggered. We 

have used this framework to analyze 600,000 applications, 

gathering about 1.5 million URLs, which we then further 

analyzed using established URL blacklists and anti-virus 

systems to identify malicious websites and applications 

that are downloadable from such websites. Our 

methodology enables us to explore the Web that is 
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reachable from within mobile applications, something that, 

we believe, is not yet done by traditional search engines 

and website blacklistsystems such as Google 

Safebrowsing. We make the following contributions.  

 We have developed a framework for analyzing the 

appweb interfaces in Android applications. We 

identify three features for a successful methodology: 

triggering of the app-web interfaces, detection of 

malicious content, and provenance to identify the 

responsible parties. We incorporate appropriate 

solutions for the above features and have 

implemented a robust system to automatically analyze 

app-web interfaces. The system is capable of 

continuous operation with little human intervention. 

 As part of our triggering app-web interfaces, we 

developed a novel technique to interact with UI 

widgets whose internals do not appear in the GUI 

hierarchy. We develop a computer graphics-based 

algorithm to find clickable elements inside such 

widgets. 

 In order to assist with determining the provenance of 

identified malicious links, we conducted a systematic 

study to associate ad networks with ad library 

packages in existing applications. Our study reveals 

201 ad networks and their associated ad library 

packages. To the best of our knowledge, this is the 

largest number of ad libraries identified. 

 We deployed our system for a period of two months 

in two continents, with one location in Northwestern 

University campus and the other in Zhejiang 

University campus. We studied over 600,000 

applications from Google Play and four Chinese 

stores for a period of two months and identified 

hundreds of malicious files and other scam 

campaigns. We present a number of interesting 

findings and case studies in an attempt to characterize 

the malware and scam landscape that can be found at 

the app-web interface. As some examples, we have 

found rogue ad networks propagating rogue 

applications; scams enticing users by claiming to give 

away free products propagating through both in-app 

advertisements and links embedded in applications; 

and SMS trojans propagating through well-known ad 

networks. 

II. LITERATURE SURVEY 

Mobile users are increasingly becoming targets of 

malware infections and scams. Some platforms, such as 

Android, are more open than others and are therefore 

easier to exploit than other platforms. In order to curb such 

attacks it is important to know how these attacks originate. 

We take a previously unexplored step in this direction and 

look for the answer at theinterface between mobile apps 

and the Web. Numerous inapp advertisements work at this 

interface: when the user taps on an advertisement, she is 

led to a web page which may further redirect until the user 

reaches the final destination. Similarly, applications also 

embed weblinks that again lead to the outside Web. Even 

though the original application may not be malicious, the 

Web destinations that the user visits could play an 

importantrole in propagating attacks. 

In order to study such attacks we develop a systematic 

methodology consisting of three components related to 

triggering web links and advertisements, detecting 

malware and scam campaigns, and determining the 

provenance of such campaigns reaching the user. We have 

realized this methodology through various techniques and 

contributions and have developed a robust, integrated 

system capable of running continuously without human 

intervention. We deployed this system for a two-month 

period and analyzed over 600,000 applications in the 

United States and in China while triggering a total of 

about 1.5 million links in applications to the Web. We 

gain a general understanding of attacks through the app-

web interface as well as make several interesting findings, 

including a rogue antivirus scam, free iPad and iPhone 

scams, and advertisements propagating SMS trojans 

disguised as fake movie players. In broader terms, our 

system enables locating attacks and identifying the parties 

(such as specific ad networks, websites, and applications) 

that intentionally or unintentionally let them reach the end 

users and,thus, increasing accountability from these 

parties. 

III. METHODOLOGY 

Our methodology for analyzing app-web interfaces will 

involve the following three conceptual components: • 
Triggering. This involves interacting with the application 

to launch web links, which may be statically embedded in 

the application code or may be dynamically generated 

(such as those in the case of advertisements). • Detection. 
This includes the various processes to discriminate 

between malicious and benign activities that may occur as 

a result of triggering. • Provenance. This is about 
understanding the cause or origin of a detected malicious 

activity, and attributing events to specific entities or 

parties. Once a malicious activity is detected, this 

component provides the information required in order to 

hold the responsible parties accountable. Different 

processes and techniques may be plugged-in to these 

different components almost independently of what goes 

into the other components. The rest of this section 

elaborates on these three components, describing the 

various processes we incorporate into each of them.  

3.1. Triggering App-Web interfaces 

Recall from previous discussion that web links in 

applications are often dynamically generated (such as from 

advertisements). Thus a static approach of extracting web 

links is not sufficient. Therefore, in order to trigger web 

links from within the application, we run the applications 

in a custom dyanamic analysis environment. To enable 

scalability andcontinuous operation, running applications 

on real devices is not a feasible option. Therefore, each 

application is run in a virtual machine based on the 

Android emulator. The applications we are interested in 

are primarily GUI oriented and therefore we need to 

navigate through the GUIautomatically to trigger app-web 

interfaces. The rest of this subsection describes 
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thetechniques thatwe leverage from past research in order 

to accomplish this, as well as some new techniques 

designed to overcome issues specific to the app-web 

interface.  

 Application UI Exploration: Application user 

interface (UI) exploration is necessary to trigger app-

web interfaces. Researchers have come up with a 

number of systems for effective UI exploration 

catering to varied applications and incorporating 

different techniques (Section VIII). An effective UI 

explorer will offer high coverage (of the UI, which 

may also translates to code coverage) while avoiding 

redundant exploration. For our work, we used the 

heuristics and algorithms that we had developed 

earlier in AppsPlayground [6].  

 We briefly describe these next. UI exploration 

generally involves extracting features (the widget 

hierarchy) from the displayed UI and iteratively 

constructing a model or a state machine of the 

application’s UI organization, i.e., how different 

windows and widgets are connected together. A 

black-box (or grey-box) technique, such as 

AppsPlayground, may apply heuristics to identify 

which windows and widgets are identical to prevent 

redundant exploration of these elements. Window 

equivalence is determined by the activity class name 

(an activity is a code-level artifact in Android that 

describes one screen or window). Widget equivalence 

is determined by various features such as any 

associated text, the position of the widget on the 

screen, and the position in the UI hierarchy. In order 

to prevent long, redundant exploration, thresholds are 

used to prune the model search.  

 Handling Webviews: While studying advertisements, 

we faced a significant challenge: most of the in-app 

advertisements are implemented as customizations of 

Webviews (these are special widgets that render Web 

content, i.e., HTML, JavaScript, and CSS). Webviews 

and some custom widgets are opaque in the UI 

hierarchy obtained from the system, i.e., the UI 

rendered inside them cannot be observed in the native 

UI hierarchy and thus interaction with them will be 

limited. To the best of our knowledge, previous 

research has not proposed a satisfactory solution to 

this problem. Certain open source projects, such as 

Selendroid [7], may be used to obtain some 

information about the internals of the Webview. We 

developed code around Selendroid to interact with 

Webviews. However, our experience was that it is 

difficult to use the information provided from 

Webviews to trigger advertisements. Advertisements 

often include specific buttons (actually decorated 

links) that should be clicked to trigger the ads. They 

may also present other features such as those relating 

to users’ preferences, but which are irrelevant for our 

purposes. The relevant links cannot easily be 

distinguished from the irrelevant ones. Often times the 

click-able link is represented by images instead of 

text. If we click the irrelevant links, ads may not get 

triggered, resulting in low click-through rates.In order 

to overcome this issue of essentially flat (i.e., with no 

hierarchical structure in the UI debug interfaces 

provided by Android) Webviews, we apply computer 

graphics techniques in order to detect buttons and 

widgets as a human would see them. Algorithm 1 

presents the detection algorithm.  

3.2. Algorithm 1Button detection algorithm 

 Perform edge detection on the view’s image  

 Find contours in the image  

 Ignore the non-convex contours or those with very 

small area  

 Compute the bounding boxes of all remaining 

contours.  

The first step, edge detection, is the technique of 

identifying sharp changes in an image. Fundamentally, it 

works by detecting discontinuities in image brightness. 

We specifically use the Canny edge detection algorithm, a 

classical, yet generally wellperforming edge detection 

algorithm. In the second step we compute contours of 

images, using the computed edges, to obtain object 

boundaries. Since buttons typically have a convex shape 

and a large enough area so that a user can easily tap on 

them, we ignore non-convex contours and those with a 

small area within a threshold parameter. Numerous 

contours such as those arising out of text or the non-

convex or open contours in embedded images are 

eliminated in this step. For the remaining contours, we 

compute the bounding boxes, or the smallest rectangles 

that would contain those contours. This step is simply to 

identify a central point where a tap can be made to 

simulate a button click. The resulting bounding boxes 

signify the buttons that would be visible to a human being. 

We have not performed a thorough evaluation of the 

accuracy of our technique but the results are good in the 

cases we have examined.  

3.3. Detection 

 As the links are triggered, they may be saved for further 

analysis and detection of malicious activity such as 

spreading malware or scam. We would like to capture the 

links, their redirection chains, and their landing pages. The 

links, redirection chains, and the content of the landing 

pages may then be further analyzed using various 

methods. 

3.3.1. Redirection chains 

Advertisements redirect from one link to another until they 

finally arrive at the landing page. As discussed earlier, the 

redirection may be a result of ad syndication and auction 

or may even be performed within an ad network itself or 

by the advertisers themselves. An example redirection 

chain of length five is shown in Figure 3. Redirection 

chains may also be observed in non-ad links. Redirection 

may be performed using several techniques, including 

HTTP 301/302 status headers, HTML meta tags, and at the 

JavaScript level. Furthermore, we found that certain ad 

networks such as Google ads apparently use time-based 

checks in order to reduce possibility of click fraud. The 

result of this is that the links must be launched in real-time 

to obtain redirection messages. In order to ensure that our 
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approach accurately follows the redirection chain 

regardless of the redirection technique used, we use an 

instrumented web browser to follow the chain, just as a 

real user would. We implemented a custom browser that 

runs inside the virtualized execution environment so that 

the ads are loaded completely realistically inside the 

browser allowing full capture of the redirection chains. 

Our browser implementation is based on the Webview 

provided in Android. With Javascript enabled and a few 

other options tweaked, it behaves completely like a web 

browser. We additionally hook onto the relevant parts to 

log every URL (including redirected ones) that is loaded in 

it while freely allowing any redirections to occur.  

3.3.2. Landing pages 

Landing pages, or the final URLs in redirection chains, in 

Android may contain links that may lead to application 

downloads. Malicious landing pages may lure the users 

into downloading trojan applications. We load the landing 

pages in a browser configured with a realistic user agent 

and window size corresponding to a mobile device, so that 

the browser appears to be the Chrome browser on 

Android. We then collect all links from the landing page 

and click each to see if any files are downloaded. 

Simulating clicks on pages loaded in a browser ensures 

that links are found and clicked properly in the presence of 

Javascript-based events. The downloaded files are 

analyzed further as below.  

3.3.3. File and URL scanning 

The collected URLs and files may be analyzed in various 

ways for maliciousness. In this paper, rather than 

developing our own analysis, we used results from URL 

blacklists and antiviruses from VirusTotal. VirusTotal 

aggregates results from over 50 blacklists and a similar 

number of antiviruses. Each URL collected, either the 

landing page or any other URL involved in the redirection 

chain, is scanned through URL blacklists provided by 

VirusTotal. This includes blacklists such as Google 

Safebrowsing, Websense Threatseeker, PhishTank, and 

others. Files that are collected as a result of downloads 

from the landing pages are scanned through the antiviruses 

provided on VirusTotal. Antivirus systems and blacklists 

are known to have false positives. In order to minimize the 

impact of this, we use agreement among antiviruses to 

reduce the false positive rate: we say a URL or a file is 

malicious only if it is flagged by at least three different 

blacklists or antiviruses. 

3.3.4. Provenance  

Once a malicious event is detected, it is necessary to make 

the right attributions to the parties involved so that these 

parties can be held responsible and proper action may be 

taken. In our system, we use two aspects as part of 

provenance.  

Redirection chain:.The redirection chain, which is already 

captured as part of the detection component. The 

redirection chain can be used to identify how the final 

landing page was reached: if the landing page contains 

something malicious, the parties owning the URLs leading 

up to the landing URL can be identified. 

Code-level elements: The application itself may include 

code from multiple parties such as the primary application 

developer as well as ad libraries from a variety of ad 

networks. In order to launch one application from another, 

Android uses what are called intents. URLs may be 

opened by applications in the system’s web browser by 

submitting intents to the system with specific parameters. 

We modify the system to log specific intents that are 

indicative of URL launches together with which part of the 

code (the Java class within which the launching code lies) 

that submitted the intent. This allows us to determine 

which code with an application launched the malicious 

URL. It is important to identify the owners of the code 

classes captured as part of provenance: do they belong to 

the application 5 developer or an ad library, and if they 

belong to an ad library, which one is it? In order to assist 

us in doing this, we therefore perform the one-time task of 

identifying prevalent ad libraries and their associated ad 

networks. 

3.4. Ad Library Identification  

Applications that monetize with advertisements typically 

partner with ad networks and embed code called ad 

libraries from them in order to display and manage 

advertisements. Our goal is to comprehensively identify ad 

networks that participate in the Android ecosystem and 

their associated ad libraries. Such an identification is 

important for automatically classifying if a malicious 

activity is a result of an advertisement or is the 

responsibility of the application developer. Some simple 

domain knowledge, such as which ad networks are there in 

the market, may not provide a comprehensive list we are 

looking for. We instead resorted to two systematic 

approaches to do this identification based on the ad 

libraries embedded in the code. 

3.4.1. Approach1 

We exploit the fact that one ad network will likely be used 

by many applications and thus common ad library code 

will be found in all applications using an ad network. The 

native programmingplatform for Android applications is 

Java and Java packages provide mechanisms to organize 

related code innamespaces. Ad libraries themselves have 

packages that can serve as their identifying signatures. In 

our first approach, we collected packages from all 

applications in our dataset and created a package hierarchy 

together with the frequency of occurrence of each 

package. We sorted the packages and then manually 

searched the most frequent packages to identify ad 

libraries. For example, after sorting, packages such as 

com.facebook and com.google.ads appear at the top. Then 

we identified the nature of each package, i.e., whether it 

constituted an ad library, based on either prior knowledge 

or manually searching information about that package on 

the Web. 

3.4.2. Approach 2 

The previous approach became cumbersome when we 

reached frequencies of a few hundred because many non-

ad packages also had such frequencies. Our alternative 

approach allows for comprehensive identification of ad 

libraries without depending on the frequency of 

occurrence of those ad libraries. Our second approach 

relies on the fact that the main application functionality is 
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only loosely coupled with the functionality of ad libraries. 

Thus, we use the technique described by Zhou et al. [8] to 

detect loosely coupled components in the applications. 

The coupling is actually measured in terms of 

characteristics such as field references, method references, 

and class inheritances across classes. Ideally, all the 

packages of one ad library will be grouped into one 

component. In reality, this does not always happen and it 

may also happen that classes that should have been in 

different components end up in the same components. 

However, the errors are tolerable and can be manually 

analyzed. The manual analysis is further eased by 

employing a clustering technique described as follows. We 

create a set of Android APIs called in an application 

component. This set of APIs forms a signature for the 

component. We map these APIs to integers to enable 

efficient set computations. Based on this, ad library 

instances with the same version have matchingAPI sets. 

For different versions, the sets will be similar but not 

identical. We run this analysis on components extracted 

from all applications and then use the Jaccard distance to 

compute dissimilarity between API sets. If it is below a 

certain threshold (we used 0.2), we place the components 

in the same cluster. Thus packages of different ad libraries 

end up in different clusters, and then clusters can be easily 

mapped to ad libraries. 

3.4.3. Results 

Using the two approaches, we were able to identify 201 ad 

networks in our dataset. To our knowledge, this is the 

highest number of ad networks identified. Some ad 

networks have ad libraries withseveral package names. For 

example,com.vpon.adon and com.vpadn belong tothe 

same network. We combine such instances together to be 

represented as a single ad network. More notably, 

Google’s Admob and DoubleClick platforms are both 

represented as Google ads. 

Note that our approach to use package names to identify 

ad libraries is contingent upon the assumption that ad 

library packages are not obfuscated. This is true for most 

cases that we know of: the top-level packages work quite 

well to identify most ad libraries. However, Airpush is one 

known ad network that obfuscates its ad libraries such that 

they are no longer identifiable with package names [9]. 

While applying our second approach, which is immune to 

lexicographic obfuscations, we also detected obfuscated 

Airpush packages, all ending up in a few clusters. The 

clusters have the non-obfuscated package 

com.airpush.android as well as obfuscated ones 

likecom.cRDpXgdA.kHmZYqsQ70374and 

com.enVVWAar.CJxTGNEL99769. 

IV. PROPOSED SOLUTION 

We implemented most of our system in Python. For UI 

exploration, we make use of the source code of the 

AppsPlayground tool [10]. However, the existing version 

of the tool is unable to run on current versions of Android, 

and we therefore reimplemented the system to work on 

current Android versions with the same heuristics as are 

described in the AppsPlayground paper. Furthermore, 

instead of using HiearchyViewer for getting the current UI 

hierarchy of the application, we used UIAutomator, which 

is based on the accessibility service of Android. This had a 

significant and positive effect on the speed of execution. 

The graphics algorithms used for button detection were 

provided by the OpenCV library and appropriate 

thresholds were chosen after repeated testing. To improve 

speed of dynamic analysis, we take advantage of KVM-

accelerated virtualization. To use this, we use Android 

images that can run on the x86 architecture.About 70% 

Android applications have no native code and so can run 

without problem on such targets. Other applications 

contain ARM native code and cannot run on x86 

architecture without proprietary library support. We 

therefore excluded applications containing native code. 

Despite this we believe the study results are generally 

representative. Furthermore, not being able torun ARM 

native code is not a fundamental limitation of our 

approach: thirdparty Android emulators, e.g., Genymotion, 

or the use of a dynamic ARM-to-x86code translation 

library(libhoudini) can allow runningARM code on 

hardware-accelerated x86 architectures [11], [12].For post-

trigger analysis, our entire framework is managed through 

Celery [13], which provides job management with the 

ability to deploy in a distributed setting.Once this stage is 

completed, any recorded redirection chains are queued 

through a REST API into the Celery-managed queue 

together with information about the application and part of 

the code that was responsible for the triggering of the 

intent that led to the redirection chain. Tasks are pulled 

from the queue to perform further analysis on the landing 

pages and scan the files and URLs with VirusTotal as 

described above. The whole system has proper retry and 

timeout mechanisms in place and could run for multiple 

months without significant need of human attention. All 

the resulting analysis data is stored in MySQL and 

MongoDB databases. Since the framework works in a 

distributed, concurrent manner, server-based SQL engines 

such as MySQL were more appropriate than serverless 

implementations like SQLite. SQL commands are 

additionally wrapped with SQLAlchemy, a library that 

provides object-relational mapping (ORM), generally 

easing the programming. We implemented the analysis of 

the landing pages or the final URLs in the redirection 

chains on top of Chromium web browser using Watir and 

the Selenium Webdriver framework. We use Watir and 

Webdriver to scriptbrowser actions for automatically 

loading web pages, clicking on links, automatically 

download content that is available on clicking links, as 

well as going back to the original page if a new page loads 

after clicking on links. All the processing is done 

headlessly (i.e., without any GUI) using the Xvfb display 

server, which is an X server implementation that does not 

present a screen output. Applications are run in the 

virtualized environment for a maximum of five minutes, 

with the average running time less than two minutes. The 

post-trigger analysis, especially the analysis of landing 

pages, is allowed to run for a maximum of fifteen minutes. 

We allow for such a long time as our crawler may traverse 

many links and each link may have complex redirection 

mechanisms that may trigger only after a short wait. A 
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systematic static analysis methodology to find ad libraries 

embedded in applications and dynamic analysis 

methodology consisting of three components related to 

triggering web links, detecting malware and scan 

campaigns, and determining the provenance of such 

campaigns reaching the user. 

V. EVALUATION AND RESULTS 

5.1. Application Collection  

Our application dataset consists of 492,534 applications 

from Google Play and 422,505 applications from four 

Chinese Androidapplication stores: 91, Anzhi, AppChina, 

and Mumayi. Google Play has a proprietary API for 

searching and downloading applications from the store and 

it further requires Google account credentials to do these 

tasks. We used PlayDrone, which is an open source project 

to crawl Google Play [14]. Google implements rate 

limiting based on Google accounts and IP addresses and 

bans accounts and IP addresses if there are two many 

requests in a given period of time. PlayDrone mitigates 

this problem by seamlessly allowing the use of multiple 

Google accounts and deploying the crawler over multiple 

machines in a distributed manner. We used the multiple 

Google accounts feature but simplified the system by 

using a single machine and setting multiple IP addresses 

for that machine. In our deployment, every new 

connection toGoogle’s servers randomly chooses from 

among twenty source IP addresses. To crawl applications 

from Chinese application stores, we used our own in-

house tool. These third-party stores have a much simpler 

API than Google Play and typically have a public 

http/https URL associated with each application. While 

there can be sophisticated ways to search for each 

application, the technique we employed was based on the 

observation that applications in all these stores have 

identifiers in a small integer range. Requesting URLs 

constructed for each possible identifier sufficed to 

completely scrap these applications stores. After removing 

applications that were redundant among these stores, the 

total number amounts to 422,505. About 30% applications 

have native code and due to implementation reasons 

mentioned in Section IV cannot be tested on our system. 

Our entire usable application dataset therefore consists of 

a little over 600,000 applications. 

5.2. Deployment  

We deployed our system to gather results over a period 

of about two months from mid-April 2015 to mid-June 

2015 in two locations, one at Northwestern University 

campus in the US and the other at Zhejian University 

campus in China. The deployment ran continuously with 

little manual intervention, and restarts were necessary only 

when we needed to update the system for fixing bugs or 

adding features. To have a realistic setting, the 

Northwestern University location ran applications from 

Google Play (only the applications available from theUS) 

while the Chinese university location ran applications 

from Chinese application stores. The location where the 

apps are run is important because much of advertising, 

which forms bulk of theapp-web interaction we are 

studying, is targeted based on location. Theadvertisements 

that are seen in one locationmay not be shown in another 

location. 

 

 

5.3. Overall Findings  

 

 

 
 

 
Overall, we recorded a total of slightly over 1 million 

launches of app-to-web links in the US deployment. In the 

Chinese deployment, this number was 415,000. Note that 

this is not a direct correspondence with the applications: 
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some applications may result in more than one launch 

while others may not result in any. In the US, we detected 

a total of 948 malicious URLs coming from 64 unique 

domains. For the Chinese deployment we detected 1,475 

malicious URLs that came from 139 unique domains. We 

also downloaded several thousands of filesof which many 

were simple text files or docx files. As for the number of 

Android applications, the US deployment collected 468 

unique applications (from the Web,outside Google Play) 

of which 271 were found to be malicious. Alarge chunk 

(244)of these malicious applications comes from the 

antivirus scam reported in Section VI-A. Excluding this 

anomalous number of 244, we find that one in six 

applicationsdownloaded from the Web (outside Google 

Play) are malicious. The file numbers above do not 

include the applications applications hosted on Google 

Play. We accounted for suchseparately: there were 

433,000 landing Google Play landing URLs, i.e., http 

URLs with play.google.com domain or URLs with market 

scheme (beginning with “market://”). These Google Play 

landing URLs led to a little over 19,000 applications on 

Google Play. About 5% of these labels arelabeled as 

malicious (based on our criterion of being flaggedby at 

least 3 antiviruses) on VirusTotal. Based on our manual 

check of the antiviruslabels,however, all of these appear to 

beadware. On theChinese deployment side, we collected 

1,097 unique files of which 435 are malicious. 102 of 

these files are from the antivirus scam of Section VI-A. 

Figures 4 and 5 present the distribution of malware 

downloads through various ad libraries in the US 

deployment and in the Chinese deployment respectively. 

The “others” bar presents the downloads through web 

links not embedded in advertisements. Both the higher 

diversity and higher number of malicious downloads in the 

Chinese deployment are noteworthy. This is likely because 

the North American Android ecosystem is centered around 

Google Play and application downloads outside it are rare. 

However, the Chinese ecosystem depends much more on 

the Web and third-party Android applicationstores. 

 
We also plot the length of redirection chains in both North 

American and Chinese Deployments. Note as the length of 

the chains increases, the two curves come closer, i.e., we 

have a greater fraction of malicious chains when they are 

longer. This was also observed by [5] and can possibly 

used to enhance our detection in future work. 

VI. CONCLUSION 

In order to curb malware and scam attacks on mobile 

platforms it is important to understand how they reach the 

user. In this paper, we explored the app-web interface, 

whereina user may go from an application to a Web 

destination via advertisements or web links embedded in 

the application. We used our implemented system for a 

period of two months to study over 600,000 applications 

in two continents and identified several malware and scam 

campaigns propagating through both advertisements and 

web links in applications. With the provenance gathered, it 

was possible to identify the responsible parties (such as ad 

networks and application developers). Our study shows 

that should such as system be deployed, the users can be 

offered better protection on the Android ecosystem by 

screening out offending applications that embed links 

leading to malicious content as well as by making ad 

networks more accountable for their ad content. 
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