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----------------------------------------------------------------------ABSTRACT------------------------------------------------------------

Resource distribution in data centers is difficult for service providers because of the structures of usage and 

condition setup decisions. Customers encounter issues to anticipate the amount of CPU and memory required for 

job execution, and henceforth are not ready to assess when work yield shall be accessible to plan for next analyses. 

Systems that utilize cluster scheduler structures to gauge job execution time exists in the literature. 

Notwithstanding, we have seen that such methods are not appropriate for anticipating CPU utilization. In this 

paper, we assist customers to figure out their applications CPU usage utilizing machine learning (ML) techniques. 

We analyze how scheduler can be utilized to predict CPU utilization through ML techniques, and its evaluation on 

two frameworks containing an enormous number of user jobs.  
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1 Introduction 

     The job analyzers in HPC environment depend on 

clients specifying job requirements. The job requirement 

has to be specified in terms of memory usage, number of 

processors required, and time for execution of a job [1,2]. 

These qualities are hard for the client to determine in view 

of different choices of jobs and condition setups and 

perplexing effects of these characteristics on by and large 

job execution [3, 4]. Client's task assignments and its 

effect on planning choices are explored by few authors [5, 

6].  

 

The processor and memory requirement influence the 

execution of customer’s task. If customers demand a 

particular quantity of CPU but utilize less, the CPUs are 

said to be underutilized [7]. Frameworks, for example, 

XSEDE use estimation techniques for jobs to be executed 

in the pipeline. As per our research, we saw that applying 

those methodology to CPU usage does not cause the best 

estimates. In the current paper, we present a tool for 

estimating CPU usage utilizing cluster scheduler using 

machine learning (ML) that could be utilized for various 

parameters appraisal identified with resource conveyance 

in HPC circumstances.  

 

Our contributions are as follows:  1. Prediction of CPU 

usage based on ML tool 2. Assessment of the ML tool to 

see how it delivers for handling the CPU usage prediction 

task. The organization of paper is as follows. Related 

works are given in section 2. Proposed ML technique is 

given in section 3, section 4 presents system 

evaluation/results. Finally, section 5 covers conclusion. 

 

2 Related Works 
     Existing research are generally focused on optimizing 

time w.r.t waiting and execution. The endeavors are useful 

in optimizing different features. If we can predict well in 

advance about how much time a job will be hold up in the 

queue, it can help us in placing the job appropriately. For 

example, authors in [1] inspected procedures and 

calculations to enhance queue waiting time expectations.   

 

The framework in [2] relies upon historical data. Authors 

in [6] developed a procedure for evaluating job runtime 

and queue waiting time. The procedure relies upon 

existing algorithms to make prediction as accurate as 

possible. Authors in [3] developed a methodology for 

arranging tasks/jobs in light of framework made work 

runtime expectations.  

 

Endeavors on CPU utilization depend generally on 

benchmarking rather than on scheduler logs [1, 3, 4, 5, 6, 

7]. For instance, authors in [6] assessed diverse ML 

techniques for envisioning spatio-fleeting technique for 

resource prediction. Another model is from authors in [7] 

who utilized virtualization technique for resource 

prediction. Their procedure depends on virtualization 

technology and a backslide based model to delineate local 

framework into a virtualized one [8,9,10]. 

 

3 Proposed Work 
Machine learning is a procedure for computational 

learning centering most AI applications. In ML, 

frameworks or computations upgrade themselves through 

data training without relying upon explicit programming. 

ML calculations are broad systems fit for doing estimates 

while in the meantime picking up from more than trillions 

of observations. The framework description of the 

proposed system alongside the expectation methods are 

discussed as follows.  

 

3.1 Framework Description  

The information flow in the proposed tool involves 

three central phases: (i) information gathering and 

transformation, (ii) model development, and (iii) 

performing forecast. The first phase gauges resource 

utility through historical information. The second phase 

interfaces with the load sharing facility (LSF) group 

scheduler to amass fitting info for optimizing the 
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performance parameters. While, the third phase forecasts 

CPU resource utilization, which is discussed in this paper.   

 

Information accumulation is very important for 

prediction. We collect it via online and offline 

environment. In online environment, real time data is 

collected and submitted to the group. It stacks all the data 

from LSF. In offline mode, tool collects data from the 

database. Further, in online mode the data gathered are 

classified into two categories: features and labels. The 

condition triggering the event is put under features, and 

occurrence of event is put under labels.  Our research 

focuses on job attributes like customer id, the resource 

requirement in terms of CPU core and memory 

requirement.  

 

The features that are gathered are preprocessed and 

stored in the database. The data now gets changed or 

converted to meaningful information that should be used 

for prediction. The quantity of CPU cores, which is 8 

cores  is marked as label to specify the requirement. For 

the training purpose the features and labels from the 

database are utilized. The window size is taken as 10000 

entries for our experiment. A feature is the input we have 

fed to the system and the label is the  output that we 

expect.  

 

Features and labels are split for training and validation, 

respectively. As a rule, we don't expect that models that 

have just retained the labels, will have the capacity to sum 

up when assessed in validation stage. Models that have 

taken in the labels, then again, will as a rule have the 

capacity to sum up on the grounds that they can perceive 

mark structures in the validation sets that are like the label 

structure that they learned in the training set. 

 

3.2 Prediction Techniques  

In this section, we discuss the ML computations 

utilized in our tool. We have used four strategies that are 

given here: Support Vector Machines (svm), Random 

Forests (rforest), Multilayer Perceptrons (mlp), and k-

Nearest Neighbor (knn).   

 

1)  Support Vector Machines (SVM): SVMs are ML 

counts at first proposed for two-assemble classification 
issues that utilize kernel techniques to depict vectors to 

(conceivably) non-straight high-dimension highlight 

spaces. In machine learning, SVMs are regulated learning 

models with related learning calculations that dissect 

information utilized for grouping and relapse 

investigation. Given an arrangement of training examples, 

each set apart as having a place with either of two 

classifications, a SVM preparing calculation assembles a 

model that appoints new precedents to one classification 

or the other. The proposed tool uses multi-label 

classification using one to many strategy, with 
regularization consistent C = 0.01. 

 

2) Random Forests (rf): Random forests are a troupe 

learning strategy for grouping, relapse and different 

assignments, that work by developing a huge number of 

choice trees at preparing time and yielding the class that is 

the method of the classes or mean expectation of the 

individual trees. In this work, we use forests having 20 

trees for splitting the jobs.  

 

3) Multilayer Perceptron: Multi Layer perceptron (mlp) 

is a feedforward neural system with at least one layers 

among information and yield layer. Feedforward implies 

that information streams in a single heading from 

contribution to yield layer (forward). This sort of system is 

prepared with the backpropagation learning calculation.  

Two frameworks are utilized in our tool, a fixed and a 

dynamic framework.  

 

4) k-Nearest Neighbors (knn): In example 

acknowledgment, the k-closest neighbors calculation is a 

non-parametric strategy utilized for arrangement and 

relapse. In the two cases, the info comprises of the k 

nearest preparing models in the element space. The yield 

relies upon whether knn is utilized for arrangement or 

relapse: In knn grouping, the yield is a class participation. 

We have used ballot based classification and a regression 

model, using k=5. 

 

4 Results 
The frameworks used for assessment of our tool is 26-

hub POWER8 cluster, and a generation system made out 

of x86 nodes. Applications from the POWER8 clump have 

distinctive qualities and more regular HPC extraordinary 

jobs that needs to be done. The x86 structure runs 

production applications, which are routinely executed by 

clients.   

 

In Tables 1 and 2 we take a look at the execution of the 

mode and each ML procedure for the validation and test 

sets in the midst of all of the 5,000-work segments. We 

highlight the fundamental five methodologies in the two 

sets. One would plan to see an equivalent precedent in the 

validation and testing set. However, the five strategies are 

truly one of a kind in those sets. Especially, svm performs 

well on validation set. 

 

Table 1. Validation Performance for x86 system 

 

segment          mode                  SVM                  

rforestmlpknn 0                          Online              0.7726                 

0.8220           0.7642                      0.7631 1                       

Online               0.8072                 0.8477           0.8005                      

0.8202 2                          Offline              0.8036                 

0.8365           0.7823                      0.8145 3                       

Offline              0.8028                 0.8366           0.7863                      

0.8122 4                          Offline               0.7033                 

0.7813           0.7008                      0.7546 
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Table 2. Test Performance for x86 system 
 

segment          Mode                 SVM                  

rforestmlpknn 0                          Online         0.8606                 

0.3948           0.6546                      0.8610 1                          

Offline         0.7448                 0.1202           0.7544                      

0.7448 2                          Offline         0.8640                 

0.0484           0.8698                      0.8630 3                          

Offline         0.8836                 0.2464           0.8918                      

0.7726 4                          Offline         0.8038                 

0.7568           0.7812                      0.8011 
 

Also, the Random Forests (rforest) method performs 

well with everything taken into account, beside a few 

segments in the x86 structure. As a result, in case we 

depend just on this procedure, we may have a superior 

execution in a couple of conditions in light of the 

speculative nature of the system. Multilayer Perceptron 

with cross-validation (mlp) appears to over-fit. Even more 

basically, the more refined knn is not dependable. This 

system is used in progress in the XSEDE grid to foresee 

line holding up time. We have implemented this procedure 

ourselves for cross breed cloud conditions with sensibly 

extraordinary results for both running time and queue 

time.  
 

Tables 3 and 4 exhibit how the execution of the polling 

based system vacillates as the amount of voters increase. It 

is easy to analyze that a polling based approach diminishes 

the peril of relying upon a single indicator. The fragment 0 

of the x86 structure, for example, using three models beats 

the best indicator by around 26\%. It does not come 

without a cost, be that as it may, as including more voters 

diminishes execution barely. 

 

Table 3. Validation Performance for POWER8 system 
segment             Mode             SVM                  

rforestmlpknn 

0                          Online          0.9509                 0.9528          

0.9996                      0.9187 1                          Online          

0.9641                 0.9642          0.9992                      0.9460 

2                          Offline         0.9704                 0.9740           

0.9994                      0.9663 3                          Offline         

0.9537                 0.9543           0.9996                      0.9439 

4                          Offline         0.8767                 0.8786           

0.9982                      0.8459 

 

Table 4. Test Performance for POWER8 system 

segment          Mode            SVM                  rforestmlpknn 

0                          Online          0.8745                 0.0013           

0.8780                     0.8737 1                          Online          

0.8510                 0.0003           0.8545                      0.8500 

2                          Offline           0.8325                 0.0031           

0.8317                      0.8287 

3                          Offline         0.8264                 0.0092           

0.8360                      0.8162 4                          Offline         

0.7412                 0.0232           0.7474                      0.7400 

 

5 Conclusion 
     End users in HPC environment continue to experience 

issues to decideresource prerequisites for execution of 

their jobs. Novel ideas are required to enhance usage of 

clustered resources in data centers of Cloud. For such 

scenarios, we proposed here a system for anticipating CPU 

necessities of jobs submitted to a few clusters using ML 

techniques. In future, we plan to extend this sort of system 

for HPC Cloud with regard to resource management, and 

security issues. 
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