
Int. Jnl. of Advanced Networking & Applications (IJANA) Special Issue, Volume 10, Issue 5(March-April 2019)

 1

Specifying CPU Requirements for HPC Applications via

ML Techniques
Priyanka Bharti

1
 and Rajeev Ranjan

2

1
School of C&IT, REVA University, Bengaluru, INDIA

2
 School of CSA, REVA University, Bengaluru, INDIA

1
 priyankabharti@reva.edu.in,

2
rajeevranjan@reva.edu.in

--ABSTRACT--

Resource distribution in data centers is difficult for service providers because of the structures of usage and

condition setup decisions. Customers encounter issues to anticipate the amount of CPU and memory required for

job execution, and henceforth are not ready to assess when work yield shall be accessible to plan for next analyses.

Systems that utilize cluster scheduler structures to gauge job execution time exists in the literature.

Notwithstanding, we have seen that such methods are not appropriate for anticipating CPU utilization. In this

paper, we assist customers to figure out their applications CPU usage utilizing machine learning (ML) techniques.

We analyze how scheduler can be utilized to predict CPU utilization through ML techniques, and its evaluation on

two frameworks containing an enormous number of user jobs.

Keywords: HPC, CPU Prediction, Machine Learning

--

1 Introduction

 The job analyzers in HPC environment depend on

clients specifying job requirements. The job requirement

has to be specified in terms of memory usage, number of

processors required, and time for execution of a job [1,2].

These qualities are hard for the client to determine in view

of different choices of jobs and condition setups and

perplexing effects of these characteristics on by and large

job execution [3, 4]. Client's task assignments and its

effect on planning choices are explored by few authors [5,

6].

The processor and memory requirement influence the

execution of customer’s task. If customers demand a

particular quantity of CPU but utilize less, the CPUs are

said to be underutilized [7]. Frameworks, for example,

XSEDE use estimation techniques for jobs to be executed

in the pipeline. As per our research, we saw that applying

those methodology to CPU usage does not cause the best

estimates. In the current paper, we present a tool for

estimating CPU usage utilizing cluster scheduler using

machine learning (ML) that could be utilized for various

parameters appraisal identified with resource conveyance

in HPC circumstances.

Our contributions are as follows: 1. Prediction of CPU

usage based on ML tool 2. Assessment of the ML tool to

see how it delivers for handling the CPU usage prediction

task. The organization of paper is as follows. Related

works are given in section 2. Proposed ML technique is

given in section 3, section 4 presents system

evaluation/results. Finally, section 5 covers conclusion.

2 Related Works
 Existing research are generally focused on optimizing

time w.r.t waiting and execution. The endeavors are useful

in optimizing different features. If we can predict well in

advance about how much time a job will be hold up in the

queue, it can help us in placing the job appropriately. For

example, authors in [1] inspected procedures and

calculations to enhance queue waiting time expectations.

The framework in [2] relies upon historical data. Authors

in [6] developed a procedure for evaluating job runtime

and queue waiting time. The procedure relies upon

existing algorithms to make prediction as accurate as

possible. Authors in [3] developed a methodology for

arranging tasks/jobs in light of framework made work

runtime expectations.

Endeavors on CPU utilization depend generally on

benchmarking rather than on scheduler logs [1, 3, 4, 5, 6,

7]. For instance, authors in [6] assessed diverse ML

techniques for envisioning spatio-fleeting technique for

resource prediction. Another model is from authors in [7]

who utilized virtualization technique for resource

prediction. Their procedure depends on virtualization

technology and a backslide based model to delineate local

framework into a virtualized one [8,9,10].

3 Proposed Work
Machine learning is a procedure for computational

learning centering most AI applications. In ML,

frameworks or computations upgrade themselves through

data training without relying upon explicit programming.

ML calculations are broad systems fit for doing estimates

while in the meantime picking up from more than trillions

of observations. The framework description of the

proposed system alongside the expectation methods are

discussed as follows.

3.1 Framework Description

The information flow in the proposed tool involves

three central phases: (i) information gathering and

transformation, (ii) model development, and (iii)

performing forecast. The first phase gauges resource

utility through historical information. The second phase

interfaces with the load sharing facility (LSF) group

scheduler to amass fitting info for optimizing the

Int. Jnl. of Advanced Networking & Applications (IJANA) Special Issue, Volume 10, Issue 5(March-April 2019)

 2

performance parameters. While, the third phase forecasts

CPU resource utilization, which is discussed in this paper.

Information accumulation is very important for

prediction. We collect it via online and offline

environment. In online environment, real time data is

collected and submitted to the group. It stacks all the data

from LSF. In offline mode, tool collects data from the

database. Further, in online mode the data gathered are

classified into two categories: features and labels. The

condition triggering the event is put under features, and

occurrence of event is put under labels. Our research

focuses on job attributes like customer id, the resource

requirement in terms of CPU core and memory

requirement.

The features that are gathered are preprocessed and

stored in the database. The data now gets changed or

converted to meaningful information that should be used

for prediction. The quantity of CPU cores, which is 8

cores is marked as label to specify the requirement. For

the training purpose the features and labels from the

database are utilized. The window size is taken as 10000

entries for our experiment. A feature is the input we have

fed to the system and the label is the output that we

expect.

Features and labels are split for training and validation,

respectively. As a rule, we don't expect that models that

have just retained the labels, will have the capacity to sum

up when assessed in validation stage. Models that have

taken in the labels, then again, will as a rule have the

capacity to sum up on the grounds that they can perceive

mark structures in the validation sets that are like the label

structure that they learned in the training set.

3.2 Prediction Techniques

In this section, we discuss the ML computations

utilized in our tool. We have used four strategies that are

given here: Support Vector Machines (svm), Random

Forests (rforest), Multilayer Perceptrons (mlp), and k-

Nearest Neighbor (knn).

1) Support Vector Machines (SVM): SVMs are ML

counts at first proposed for two-assemble classification
issues that utilize kernel techniques to depict vectors to

(conceivably) non-straight high-dimension highlight

spaces. In machine learning, SVMs are regulated learning

models with related learning calculations that dissect

information utilized for grouping and relapse

investigation. Given an arrangement of training examples,

each set apart as having a place with either of two

classifications, a SVM preparing calculation assembles a

model that appoints new precedents to one classification

or the other. The proposed tool uses multi-label

classification using one to many strategy, with
regularization consistent C = 0.01.

2) Random Forests (rf): Random forests are a troupe

learning strategy for grouping, relapse and different

assignments, that work by developing a huge number of

choice trees at preparing time and yielding the class that is

the method of the classes or mean expectation of the

individual trees. In this work, we use forests having 20

trees for splitting the jobs.

3) Multilayer Perceptron: Multi Layer perceptron (mlp)

is a feedforward neural system with at least one layers

among information and yield layer. Feedforward implies

that information streams in a single heading from

contribution to yield layer (forward). This sort of system is

prepared with the backpropagation learning calculation.

Two frameworks are utilized in our tool, a fixed and a

dynamic framework.

4) k-Nearest Neighbors (knn): In example

acknowledgment, the k-closest neighbors calculation is a

non-parametric strategy utilized for arrangement and

relapse. In the two cases, the info comprises of the k

nearest preparing models in the element space. The yield

relies upon whether knn is utilized for arrangement or

relapse: In knn grouping, the yield is a class participation.

We have used ballot based classification and a regression

model, using k=5.

4 Results
The frameworks used for assessment of our tool is 26-

hub POWER8 cluster, and a generation system made out

of x86 nodes. Applications from the POWER8 clump have

distinctive qualities and more regular HPC extraordinary

jobs that needs to be done. The x86 structure runs

production applications, which are routinely executed by

clients.

In Tables 1 and 2 we take a look at the execution of the

mode and each ML procedure for the validation and test

sets in the midst of all of the 5,000-work segments. We

highlight the fundamental five methodologies in the two

sets. One would plan to see an equivalent precedent in the

validation and testing set. However, the five strategies are

truly one of a kind in those sets. Especially, svm performs

well on validation set.

Table 1. Validation Performance for x86 system

segment mode SVM

rforestmlpknn 0 Online 0.7726

0.8220 0.7642 0.7631 1

Online 0.8072 0.8477 0.8005

0.8202 2 Offline 0.8036

0.8365 0.7823 0.8145 3

Offline 0.8028 0.8366 0.7863

0.8122 4 Offline 0.7033

0.7813 0.7008 0.7546

Int. Jnl. of Advanced Networking & Applications (IJANA) Special Issue, Volume 10, Issue 5(March-April 2019)

 3

Table 2. Test Performance for x86 system

segment Mode SVM

rforestmlpknn 0 Online 0.8606

0.3948 0.6546 0.8610 1

Offline 0.7448 0.1202 0.7544

0.7448 2 Offline 0.8640

0.0484 0.8698 0.8630 3

Offline 0.8836 0.2464 0.8918

0.7726 4 Offline 0.8038

0.7568 0.7812 0.8011

Also, the Random Forests (rforest) method performs

well with everything taken into account, beside a few

segments in the x86 structure. As a result, in case we

depend just on this procedure, we may have a superior

execution in a couple of conditions in light of the

speculative nature of the system. Multilayer Perceptron

with cross-validation (mlp) appears to over-fit. Even more

basically, the more refined knn is not dependable. This

system is used in progress in the XSEDE grid to foresee

line holding up time. We have implemented this procedure

ourselves for cross breed cloud conditions with sensibly

extraordinary results for both running time and queue

time.

Tables 3 and 4 exhibit how the execution of the polling

based system vacillates as the amount of voters increase. It

is easy to analyze that a polling based approach diminishes

the peril of relying upon a single indicator. The fragment 0

of the x86 structure, for example, using three models beats

the best indicator by around 26\%. It does not come

without a cost, be that as it may, as including more voters

diminishes execution barely.

Table 3. Validation Performance for POWER8 system
segment Mode SVM

rforestmlpknn

0 Online 0.9509 0.9528

0.9996 0.9187 1 Online

0.9641 0.9642 0.9992 0.9460

2 Offline 0.9704 0.9740

0.9994 0.9663 3 Offline

0.9537 0.9543 0.9996 0.9439

4 Offline 0.8767 0.8786

0.9982 0.8459

Table 4. Test Performance for POWER8 system

segment Mode SVM rforestmlpknn

0 Online 0.8745 0.0013

0.8780 0.8737 1 Online

0.8510 0.0003 0.8545 0.8500

2 Offline 0.8325 0.0031

0.8317 0.8287

3 Offline 0.8264 0.0092

0.8360 0.8162 4 Offline

0.7412 0.0232 0.7474 0.7400

5 Conclusion
 End users in HPC environment continue to experience

issues to decideresource prerequisites for execution of

their jobs. Novel ideas are required to enhance usage of

clustered resources in data centers of Cloud. For such

scenarios, we proposed here a system for anticipating CPU

necessities of jobs submitted to a few clusters using ML

techniques. In future, we plan to extend this sort of system

for HPC Cloud with regard to resource management, and

security issues.

References
[1] C. B. Lee, A. Snavely, "On the user–scheduler

dialogue: studies of user-provided runtime estimates and

utility functions", Journal of High Performance

Computing Applications, 20 (4), 495-506, 2017.

[2] C. B. Lee, Y. Schwartzman, J. Hardy, A. Snavely,

"Are user runtime estimates inherently inaccurate?",

Proceedings of the International Workshop on Job

Scheduling Strategies for Parallel Processing (JSSPP),

Springer, 253-263, 2014.

[3] D. Tsafrir, Y. Etsion, D. G. Feitelson, "Backfilling
using system-generated predictions rather than user

runtime estimates", IEEE Transactions on Parallel and

Distributed Systems 18 (6), 789-803, 2017.

 [4] S.-H. Chiang, A. Arpaci-Dusseau, M. K. Vernon,

"The impact of more accurate requested runtimes on

production job scheduling performance", Proceedings of

the International Workshop on Job Scheduling Strategies

for Parallel Processing (JSSPP), Springer, 103-127, 2012.

[5] D. Tsafrir, D. G. Feitelson, "The dynamics of

backfilling: solving the mystery of why increased
inaccuracy may help", Proceedings of IEEE International

Symposium on the Workload Characterization, IEEE, 131-

141, 2016.

[6] D. Zotkin, P. J. Keleher, "Job-length estimation and

performance in backfilling schedulers", Proceedings of the
International Symposium on High Performance

Distributed Computing (HPDC), IEEE, 236-243, 2017.

[7] M. Hovestadt, O. Kao, A. Keller, A. Streit,

"Scheduling in HPC resource management systems:

Queuing vs. planning", Proceedings of the International

Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP), Springer, 1-20, 2013.

[8] R. L. Cunha, E. R. Rodrigues, L. P. Tizzei, M. A.

Netto, "Job placement advisor based on turnaround

predictions for HPC hybrid clouds", Future Generation

Computer Systems 67, 35-46, 2017.

[9] A. Coates, A. Y. Ng, "The importance of encoding

versus training with sparse coding and vector

quantization", Proceedings of the 28th International

Conference on Machine Learning (ICML-11), 921-928,

2017.

[10] C. Cortes, V. Vapnik, "Support-vector networks",

Journal of Machine Learning, 20 (3), 273-297, 2005.

	1 Introduction
	2 Related Works
	3 Proposed Work
	3.1 Framework Description
	3.2 Prediction Techniques

	4 Results
	5 Conclusion
	End users in HPC environment continue to experience issues to decideresource prerequisites for execution of their jobs. Novel ideas are required to enhance usage of clustered resources in data centers of Cloud. For such scenarios, we proposed her...
	References
	[1] C. B. Lee, A. Snavely, "On the user–scheduler dialogue: studies of user-provided runtime estimates and utility functions", Journal of High Performance Computing Applications, 20 (4), 495-506, 2017.
	[2] C. B. Lee, Y. Schwartzman, J. Hardy, A. Snavely, "Are user runtime estimates inherently inaccurate?", Proceedings of the International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), Springer, 253-263, 2014.
	[3] D. Tsafrir, Y. Etsion, D. G. Feitelson, "Backﬁlling using system-generated predictions rather than user runtime estimates", IEEE Transactions on Parallel and Distributed Systems 18 (6), 789-803, 2017.
	[4] S.-H. Chiang, A. Arpaci-Dusseau, M. K. Vernon, "The impact of more accurate requested runtimes on production job scheduling performance", Proceedings of the International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), Spri...
	[5] D. Tsafrir, D. G. Feitelson, "The dynamics of backﬁlling: solving the mystery of why increased inaccuracy may help", Proceedings of IEEE International Symposium on the Workload Characterization, IEEE, 131-141, 2016.
	[6] D. Zotkin, P. J. Keleher, "Job-length estimation and performance in backﬁlling schedulers", Proceedings of the International Symposium on High Performance Distributed Computing (HPDC), IEEE, 236-243, 2017.
	[7] M. Hovestadt, O. Kao, A. Keller, A. Streit, "Scheduling in HPC resource management systems: Queuing vs. planning", Proceedings of the International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), Springer, 1-20, 2013.
	[8] R. L. Cunha, E. R. Rodrigues, L. P. Tizzei, M. A. Netto, "Job placement advisor based on turnaround predictions for HPC hybrid clouds", Future Generation Computer Systems 67, 35-46, 2017.
	[9] A. Coates, A. Y. Ng, "The importance of encoding versus training with sparse coding and vector quantization", Proceedings of the 28th International Conference on Machine Learning (ICML-11), 921-928, 2017.
	[10] C. Cortes, V. Vapnik, "Support-vector networks", Journal of Machine Learning, 20 (3), 273-297, 2005.

