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--------------------------------------------------------------ABSTRACT--------------------------------------------------------- 
This paper proposes a novel sparse adaptive technique to handle variable sparsity. The algorithm is based on the 
measure of sparseness. A proportionate matrix distributes the gain factor for all filter taps during each iteration. 
Each filter coefficient of the adaptive filter is updated by the corresponding diagonal element of the 
proportionate matrix, and that depends on the degree of sparseness. The classical recursive least square 
algorithm (RLS) is amended by accommodating the proportionate matrix to propose the sparseness-controlled 
proportionate recursive least square (SC-PRLS) algorithm. The convergence control parameter is incorporated 
into the algorithm to achieve faster convergence and better steady-state error. The performance of Mean squared 
error and stead state error of the proposed algorithm are also compared with standard RLS and proportionate 
RLS (PRLS). The simulation results indicate that SC-PRLS is more effective than PRLS and traditional RLS. 
An increase in the degree of sparseness leads to an increase in steady-state error and it can be controlled by 
convergence control parameter, while the convergence rate remains intact in the SC-PRLS. It performs superior 
in sparse as well as in non-sparse environment so this algorithm can handle large variations in the sparseness. 
Keywords: SC-PRLS, Sparseness Controlled Proportionate Adaptive Algorithm, Sparse and Non-Sparse 
Systems, RLS. 
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1. INTRODUCTION  

The classical adaptive digital signal processing 
algorithms do not perform well for the problems 
with sparse distribution like acoustic echo 
cancellation, optical equalizers, underwater 
acoustic communication, network echo 
cancellation, sparse system identification, etc. 
Recently, several variants of the classical 
algorithms were proposed to make use of sparsity 
leading to improvement in the performance for 
sparse systems [1],[2],[3],[4],[5],[6],[7],[8],[9], 
[10],[18],[22],[23]. Mainly, two techniques are 
used to develop algorithms for sparse systems, one 
is the compressed sensing approach and the other is 
proportionate update scheme [2]. Many algorithms 
were inspired by compressive sensing. Different ࢒-
norm concepts were applied to least mean square 
(LMS), recursive least square (RLS), affine 
projection (AP), and Maximum Correntropy 
Criterion (MCC) cost functions [3],[4],[5],[18], 
[21],[24],[25]. By vanishing the inactive weights, 
zero attractor (ZA) based adaptive filters improve 
the performance gain of sparse systems over their 
conventional counterparts especially in steady-state 
[4],[20]. 

The proportionate updating (PU) mechanism was 
popular for the systems having relatively 

nonuniform sparse structures [2]. The proportionate 
updating concept is applied to LMS family of 
algorithms. That improves the steady-state 
performance and convergence rate of the algorithm. 
For each filter coefficient, proportionate NLMS 
(PNLMS) has a different step size for individual 
coefficient. A proportionate matrix is introduced 
into the cost function to incorporate the step size 
for each individual coefficient, which is linearly 
proportional to the magnitude of that filter 
coefficient's estimation [6]. For sparse impulse 
response, PNLMS algorithm converges fast during 
the initial phase but afterward, convergence 
reduces significantly. For the dispersive impulse 
response of the system, convergence rate 
deteriorates even lower than NLMS algorithm. An 
improved PNLMS (IPNLMS) was introduced to 
address this issue, which exploits the proportionate 
concept by mixing NLMS and PNLMS algorithms 
in a controlled manner to handle proportionate and 
non-proportionate adaption [7]. Sparseness 
variation in impulse response changes the 
performance of IPNLMS. Sparseness controlled 
IPNLMS introduces a factor to control degree of 
sparsity into diagonal components of the 
proportional matrix. It increases the robustness of 
IPNLMS. [5],[8],[9]. 
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Despite extensive research in the area of 
Proportionate Update (PU) in the context of LMS, 
AP, and MCC, efficient design of sparse RLS using 
this mechanism is still lacking [10],[11], [18]. 
Natural RLS (NRLS), proportionate RLS 
algorithms, L0-PRLS and L1-PRLS design using 
PU mechanism [8],[10],[11],[12]. A proportionate 
matrix was used to take into account the system 
sparsity in the natural recursive least square 
(NRMS). NRLS is more dependent on the 
conditions of the input covariance matrix than 
classical RLS [8]. By combining proportionate 
matrix with Kalman gain vector in traditional RLS 
update equation, a new algorithm proportionate 
RLS (PRLS) was proposed by yu wang and zhen 
qin in 2021 [23]. The PRLS was inspired by the 
concept of IPLMS [13],[14]. L0-PRLS and L1-
PRLS were designed using and norm penalty in the 
cost function of RLS and a proportionate matrix in 
the update equation [11],[12],[20],[22],[23]. 

To enhance the performance of PRLS, a new 
algorithm is proposed by inserting sparseness 
control factor in the proportionate matrix. 
Performance of RLS, PRLS, and proposed 
Sparseness controlled proportionate recursive least 
square (SC-PRLS) is a compared for sparse system 
identification. This study also studies the effect of 
the convergence control parameter on the 
algorithm's performance. 

The paper is organized as follows: in section 2, a 
brief description of different adaptive algorithms 
incorporating proportionate update (PU) 
mechanisms is presented. a new algorithm SC-
PRLS is proposed in section 3.  The simulation 
results and comparison are given in section 4. 
Section 5 concludes the paper. 

2. RELATED ADAPTIVE ALGORITHMS 
FOR SSPARSE SYSTEMS 

In this section, a brief introduction of the 
algorithms incorporating PU mechanism in LMS 
and RLS is presented, which inspired the 
development proposed algorithm. The LMS 
algorithm and its variants are widely used for linear 
filtering [3],[4],[8],[10],[11],[12],[13]. For non-
stationary environment Normalised Least Mean 
Square (NLMS) uses adaptive step size.  

The update equation for basic LMS algorithm is 
given as:  

݇)ࡺෝ࢝ + 1) = (݇)ࡺෝ࢝ + µ݁(݇)࢞ෝ(݇)   (1) 

Where ݁(݇) = ݀(݇) −  is the ,(݇)ࡺෝ࢝(݇)ෝ்࢞
instantaneous error, ݀(݇) is the desired signal, µ is 
the step size, ࢞ෝ(݇) = ,(݇)ݔ] ݇)ݔ − 1), . … . . , ݇)ݔ −
ܰ + 1)]் is the input signal, and   ࢝ෝࡺ(݇) =
,(݇)ଶݓ,(݇)ଵݓ] … . .  ே(݇)]் is for adaptive filter’sݓ,
coefficient/tap vector of length N. 

2.1 Normalized Least Mean Square (NLMS) 

LMS has fixed step size. Proper selection of step 
size is important for convergence. When working 
environment becomes Non-stationary, LMS does 
not perform well. Therefor adaptive step size was 
introduced in NLMS. Which allows the filter 
adaption self-regulating and does not depends on 
incoming signal. The update equation for NLMS is 
given as:      

݇)ෝேݓ + 1) = (݇)ෝேݓ +  µ(݇)ݔො(݇)݁(݇) = (݇)ෝேݓ +
µ଴

௫ො(௞)௘(௞)
௫ො೅(௞)௫ො(௞)ାఋಿಽಾೄ

                       (2) 

Where Adaptive step size  µ(݇) = µబ
ෝ(௞)‖మమାఋಿಽಾೄ࢞‖

, 
µ଴ is initial step size, ‖. ‖ଶ is the Euclidean norm 
and ߜே௅ெௌis the regularization parameter used to 
avoid the problem excessively high step size when 
magnitude of the input vectors is zero or near to 
zero. 

2.2 Proportionate NLMS Algorithm (PNLMS) 

LMS and NLMS algorithms do not work well when 
the desired impulse response has a high proportion 
of inactive weights compared to active weights. 
Therefore, Proportionate NLMS (PNLMS) was 
developed incorporating proportionate matrix in 
NLMS for the applications such as echo 
cancellation, adaptive noise cancellation, under 
water acoustic channel estimation etc. where the 
environment is sparce. In PNLMS, larger 
coefficients maintain large step size to make faster 
convergence. Therefore, active taps are adjusted 
faster than the non-active taps for the sparse 
system. It leads to faster convergence of PNLMS 
over NLMS for sparse systems. The filter update 
equation for the PNLMS algorithm is given as:  

(݇)ࡺෝ࢝ = ݇)ࡺෝ࢝ − 1) + µ(ࡳ(݇ − /((݇)݁(݇)ෝ࢞(1
݇)ࡳ(݇)ෝ்࢞) − (݇)ෝ࢞(1 + ௉ே௅ெௌߜ  )    (3) 

The diagonal matrix G(n) leads to adjustment in the 
step-sizes of the individual weights of the filter. 
G(n) is known as proportionate matrix. 

݇)ࡳ − 1) = ݀݅ܽ݃{݃ଵ(݇ − 1),݃ଶ(݇ − 1),݃ଷ(݇ −
1), … … ,݃ே(݇ − 1) }    

 (4) 

 The diagonal elements of proportionate matrix 
G(n) are calculated as: 

 ݃௟(݇) = ఊ೗(௞)
భ
ಿ
∑ ఊ೔(௞)ಿషభ
೔సబ

,0 ≤ ݈ ≤ ܰ − 1   (5) 

(݇)௟ߛ =
,ߩ൛ ݔܽ݉ max൫ߜ௣, ,|(݇)଴ݓ| ,|(݇)ଵݓ| … … ,ேିଵ(݇)| ൯ݓ| ൟ|(݇)ࡺෝ࢝|
    (6) 

Where p is regularization parameter and it is used 
to avoid  ࢝ෝࡺ(݇) from stalling during initialization 
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stage. The parameter ߩ  in equation (6) is used to 
avoid the coefficients from inhibiting when they 
are relatively smaller than the largest one. Its 
typical value is from 1/N to 5/N. The regularization 
parameter for PNLMS is related with the 
regularization parameter of NLMS as  p =

N
NLMS

,  where N is length of filter.  

The PNLMS algorithm has faster initial 
convergence and tracking than NLMS for sparse 
Impulse response. The main disadvantage of 
PNLMS algorithm is that after initial fast 
adaptation, its convergence rate begins to slow 
significantly and becomes even poor than the 
NLMS algorithm.  For dispersive impulse response, 
convergence speed is less in PNLMS algorithm. 
The computational complexity is increased and 
slows the convergence speed after initial period. 

2.3 Improved PNLMS (IPNLMS) Algorithm  

To overcome the problem of slow convergence of 
PNLMS, several improved versions of PNLMS like 
IPNLMS and PNLMS++ are proposed. The 
PNLMS++ improves the convergence by 
alternating between proportionate and 
nonproportionate NLMS. A regulated combination 
of PNLMS and NLMS is used in the IPNLMS to 
prevent performance loss for dispersive impulse 
response of the unknown system. But for the initial 
phase, the IPNLMS converges similar to the 
PNLMS for sparse impulse response. So, overall 
performance of IPNLMS is better than PNLMS. 

For IPNLMS, the diagonal elements of the 
proportional matrix G(n), which is a diagonal 
matrix, are defined as 

(݇)௟ߛ = (1− (ߙ ෝ(௞)‖భ࢝‖
ே

+ (1 +   |(݇)ෝ࢝|(ߙ
     (7) 

   ݃௟(݇) = (ଵିఈ)
ଶே

+
(ଵାఈ)|௪೗(௞)|

ଶ∑ |௪೔(௞)|ାఌಿషభ
೔సబ

,0 ≤ ݈ ≤ ܰ − 1 

݃௟(݇) = (ଵିఈ)
ଶே

+ (ଵାఈ)|௪೗(௞)|
ଶ‖࢝ෝࡺ(௞)‖భାఌ

,0 ≤ ݈ ≤ ܰ − 1 
     (8) 

Where 1
. is define as the 1 -norm. To prevent 

division by zero, a constant of very small positive 
value  is incorporated. The adjustable parameter 
  can alter the behavior of IPNLMS by switching 
between NLMS and PNLMS. For   = -1, 
IPNLMS is equivalent to NLMS and IPNLMS 
behaves like PNLMS when  is close to 1.  

The movable parameter can alter how IPNLMS 
behaves when switching between NLMS and 

PNLMS. As can be shown, IPNLMS behaves like 
PNLMS when = -1 and is identical to NLMS when 
= -1. 

The taps update equation for IPNLMS is described 
as: 

(݇)ࡺෝ࢝ = ݇)ࡺෝ࢝ − 1) + µ(ࡳ(݇ − /((݇)݁(݇)ෝ࢞(1
ෝ்࢞) ݇)ࡳ(݇)  − (݇)ෝ࢞(1 +  ூ௉ே௅ெௌ)    (9)ߜ

Where the regularization parameter 

N
NLMS

IPNLMS 2
)1( 




  .                                   

Normalized misalignment is low in IPNLMS in 
comparison to PNLMS. For an impulse response 
that is between sparse and dispersive, it behaves 
much better than PNLMS and PNLMS++. Also, for 
highly sparse impulse response, IPNLMS algorithm 
converges same as PNLMS [6], [15],[16]. 

The IPNLMS improves the tracking capability for 
sparse impulse response and non-sparse or 
dispersive impulse response for time-varying 
system. when  is decreased, the steady-state MSE 
increased. 

2.4 Sparseness-controlled IPNLMS (SC-IPNLMS) 
Algorithm  

The sparseness-controlled IPNLMS (SC-
IPNLLMS) algorithms measure the sparseness of 
the predicted impulse response at each iteration, 
which improve the convergence rate for the 
systems with variable sparseness.  

For impulse response  ࢝ෝࡺ(݇), the degree of 
sparseness is defines as [3],[17], [26]: 

(݇)ߦ             = ே
N-√ே

ቄ1− భ‖(௞)ࡺෝ࢝‖
√ே‖࢝ෝࡺ(௞)‖మ

ቅ         

Where 0  (݇)ߦ 1 and ‖. ‖ଵ & ‖. ‖ଶ are define as 
the ℓଵ-norm and ℓଶ-norm respectively. Impulse 
responses that are dispersive or non-sparse have 
tiny values of ξ(k) that are close to 0, while impulse 
responses that are sparse have higher values of ξ(k) 
that is close to 1.  

The convergence of SC-IPNLMS of is divide in 2 
stages. In 1st stage it follows IPNLMS and in 2nd 
stage it uses SC-IPNLMS that uses degree of 
sparseness [9]. 

The control factor of SC-IPNLMS algorithm is: 

݃௟(݇) = (ଵିఈ)
ଶே

+ (ଵାఈ)|௪೗(௞)|
ଶ‖࢝ෝࡺ(௞)‖భାఋ಺ುಿಽಾೄ

 , for 0 ≤ ݇ ≤
ܰ − 1    (11a) 
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݃௟(݇) = ቂଵି଴.ହక(௞)
ே

ቃ (ଵିఈೞ೎ష಺ುಿಽಾೄ)
ଶே

+

ቂଵା଴.ହక(௞)
ே

ቃ (ଵାఈೞ೎ష಺ುಿಽಾೄ)|௪೗(௞)|
ଶ‖࢝ෝࡺ(௞)‖భାఋೄ಴ష಺ುಿಽಾೄ

, ݇ ݎ݋݂ ≥ ܰ    
 (11b) 

To improve convergence, SC-IPNLMS adjust step 
size of individual filter taps by measuring the 
degree of sparseness for estimated impulse 
response.  

2.5 Recursive least square algorithm (RLS) 

The filter weights in RLS can be updated as 

(݇)ࡺෝ࢝ = ݇)ࡺෝ࢝ − 1) + क(݇)݁∗(݇|݇ − 1) 
     (12) 

             ݁(݇|݇ − 1) = ݀(݇) ࡺෝ࢝−
ு(݇ − (݇)ෝ࢞(1

     
 (13) 

        क(݇) = ෝ(௞)࢞(௞ିଵ)ࡼ
ఒା࢞ෝಹ(௞)ࡼ(௞ିଵ)࢞ෝ(௞)  

          
 (14) 

 forgetting factor  0 < ߣ < 1  

(݇)ࡼ          = ݇)ࡼ]ଵିߣ − 1)−क(݇)࢞ෝு(݇)ࡼ(݇ −
1)]     

 (15) 

2.6 proportionate recursive least square (PRLS) 
algorithms 

Using the idea of IPNLMS, the PRLS algorithm is 
created in [10]. Inspired by IPNLMS, a 
Proportionate matrix G(k-1) is added to the RLS 
update equation. The diagonal matrix G(k-1) was 
produced via equation given below      

݇)ࡳ − 1) = ݀݅ܽ݃{݃ଵ(݇ − 1),݃ଶ(݇ −
1), … … ,݃ே(݇ − 1)}   

  (16) 

݃௡(݇ − 1) = ఓ(ଵିఈ)
ଶே

+ 1)ߤ +

(ߙ |௪೙(௞ିଵ)|
ଶ‖࢝ෝࡺ(௞ିଵ)‖భାఢ

݊ ݎ݋݂          ,  = 1,2,3 … .ܰ  
  (17) 

Where 1−] ߳ ߙ, 1) ܽ݊݀  ߳ is regularized parameter. 

Filter weight update equation is  

(݇)ࡺෝ࢝ = ݇)ࡺෝ࢝ − 1) + ݇)ࡳ − 1)क(݇)݁∗(݇|݇ −
1)      (18) 

 

Where A priori error  

 ݁(݇|݇ − 1) = ݀(݇) ࡺෝ࢝−
ு(݇ −  ෝ(݇)  (19)࢞(1

Where क(݇) Kalman gain vector        

  क(݇) = ෝ(௞)࢞(௞ିଵ)ࡼ
ఒା࢞ෝಹ(௞)ࡼ(௞ିଵ)࢞ෝ(௞)

   (20) 

The inverse of input covariance matrix computed 
similar to RLS. 

The principle of the PRLS is to use the 
proportionate matrix G(n-1) to determine the large 
weights to be assigned to active taps in a sparse 
environment. A control parameter ߤ in the 
proportionate matrix used for balancing PRLS's 
convergence performance and steady-state 
behaviour. 

3. ORIGINALITY 

A novel adaptive digital signal processing 
technique for sparse system identification is 
presented in this research. The algorithms designed 
for sparse systems does not perform well for non-
sparse systems. It performs well for sparse as well 
as non-sparse system. When Degree of sparse 
changes performance of proportionate type 
algorithms do not perform well, while the proposed 
algorithm has consistent performance even when 
degree of sparseness changes.  

4.  PROPOSED SPARSENESS-
CONTROLLED PROPORTIONATE 
RECURSIVE LEAST SQUARE (SC-
PRLS) ALGORITHM 

A new algorithm is proposed in this section which 
is inspired from SC-IPNLMS and PRLS. The 
sparseness value of the estimated impulse response 
at each iteration serves as the basis for the 
algorithm. Proportionate matrix control parameters 
are computed based on the sparseness level 
Accordingly, it controls the weights of each tap 
during the update process. The proposed 
sparseness-controlled algorithm improves the 
convergence rate as compared to PRLS for both 
sparse and non-sparse systems. In SC-PRLS, as the 
estimate of the filter coefficients  ࢝ෝࡺ(݇) gradually 
converges, the sparseness measurement converges 
to its optimal value, which is the sparseness of 
actual impulse response of unknown system.  The 
sparseness of an impulse-responsive system is 
measured by its degree of sparseness ξ(k).  ߦ(݇) is 
defined in equation number (10). When the degree 
of sparseness is one, only one tap is nonzero and 
rest all taps are zero. For the degree of sparseness is 
zero, all taps are equal including sign. So, degree of 
sparseness depends on number of nonzero 
coefficients in estimated impulse response. Degree 
of sparseness  ߦ(݇) is expected to converges faster 
than ࢝ෝࡺ(݇) as it is more sensitive to the 
fluctuations of  ࢝ෝࡺ(݇) around its optimal value.  

Proportionate update (PU) leads to gain distribution 
in accordance with diagonal elements of the 
proportionate matrix. So, the sparseness control is 
included in the elements of proportionate matrix, 
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similar to the implementation in SC-IPNLMS [9]. 
The proportionate control distribution parameters 
݃௟(݇)  for the proposed algorithms can be 
computed by equation number (21), in which the 
proportionate and nonproportionate terms are 
combined.  

The control factors of SC-PRLS algorithm are 
computed as follows: 

݃௟(݇) = ߤ ቂ௔(௞)
ே
ቃ (ଵିఈೞ೎)

ଶே
+ ߤ ቂ௕(௞)

ே
ቃ (ଵାఈೞ೎)|௪೗(௞)|

భାఋ‖(௞)ࡺෝ࢝‖
,    

     (21) 

Where ߙ௦௖ ∈  [−1, 1] is a constant,  ܽ(݇) = 1−
(݇)ܾ and (݇)ߦߠ = 1 +  enables the negative  (݇)ߦߠ
and positive changes as degree of sparseness ߦ(݇) 
increases. The range of ܽ(݇) and ܾ(݇) is 1 <
ܽ(݇) < 1 − and 1  ߠ < ܾ(݇) < 1 +  ߠ
corresponding to contributions of non-sparse and 
sparse terms in the elements of proportionate 
control matrix. To further enhance performance, 
weights are assigned based on a priori knowledge 
of spareness using the constant θ. Non-proportional 
terms are given an excessive amount of weight 
when the degree of sparseness is not considerable, 
while proportionate terms become less significant. 
Typically, unknown sparse systems have θ = 0.5 
[26]. 

݃௟(݇) = ߤ ቂଵିఏక(௞)
ே

ቃ (ଵିఈೞ೎)
ଶே

+

ߤ ቂଵାఏక(௞)
ே

ቃ (ଵାఈೞ೎)|௪೗(௞)|
భାఋ‖(௞)ࡺෝ࢝‖

     (22) 

For large value of ߦ(݇), the impulse response is 
sparse and algorithm allocates more weight to the 
proportionate term, for less sparse impulse 
response, the algorithm allocates higher weightage 
to non-sparse term. Second term in the equation 
number (24) is responsible for individual weight 
updates, while first term is equally applied to all the 
weights. Both terms lead to faster convergence 
when impulse response is relatively less sparse. To 
speed up the convergence of large filter 
coefficients, the initial value of degree of 
sparseness ξ (0) should be high. The convergence 
controlling parameter ߤ is responsible for trade off 
the between steady-state behaviour and 
convergence rate.  

A Proportionate matrix ࡳ(݇ − 1) is a diagonal 
matrix whose diagonal elements are calculated by 
equation number (24). The matrix ࡳ(݇ − 1) is 
defined as      

݇)ࡳ − 1) = ݀݅ܽ݃{݃ଵ(݇ − 1),݃ଶ(݇ −
1) , … … ,݃ே(݇ − 1)}   (23) 

This proportionate matrix ࡳ(݇ − 1)  introduced in 
filter update equation of SC-PRLS. The filter 

weight update equation for the proposed algorithm 
is given as 

(݇)ࡺෝ࢝ = ݇)ࡺෝ࢝ − 1) + ݇)ࡳ −
1)क(݇)݁∗(݇|݇ − 1)  24) 

Where, a priori error is defined as 

݁(݇|݇ − 1) = ݀(݇) ࡺෝ࢝−
ு(݇ −  ෝ(݇)  (25)࢞(1

The Kalman gain vector in the tap update equation 
is define as 

     क(݇) = ෝ(௞)࢞(௞ିଵ)ࡼ
ఒା࢞ෝಹ(௞)ࡼ(௞ିଵ)࢞ෝ(௞)

    (26) 

Inverse of input covariance matrix P(n-1) is defined 
similar to the standard RLS. 

The proposed algorithm uses sparseness to update 
active and passive taps separately. Depending the 
on degree of sparseness it assigns the weight to 
proportionate and nonproportionate term. 
Proportionate matrix is updated after every iteration 
in update equation and all other parameters are 
calculated similar to standard RLS. 

5. RESULTS AND ANLYSIS 

Simulations have been performed using MATLAB 
and performance of PRLS, RLS and proposed SC-
PRLS algorithms is compared. Mean squared error 
(MSE) and Means Square Deviation (MSD) is 
calculated by applying independent random input 
signal of length N=2000 samples. MSE and MSD 
is averaged after each iteration for 2000 trials. 
Forgetting factor was kept 0.99, ߙ௦௖ = 0.65 
regularization parameter ߜ = 0.001 and 
convergence controlling parameter 35=ߤ. Fig.1 
shows mean square error and steady-state error 
performance of the algorithm. Here, the number of 
active taps was kept at 10% of the total taps. Total 
number of taps was kept at 40. The variations of 
mean square deviation with respect to number of 
iterations is shown in fig.2. 

The convergence of the algorithms takes place at 
230 iterations, 380 iteration and 800 iterations for 
SC-PRLS, PRLS and RLS respectively. steady-
state error (SSE) is -40dB, -43db, -43.2db for 
PRLS, RLS & SC-PRLS respectively. From the 
results, it can be observed that RLS has better 
steady-state error performance but converges 
slowly while PRLS converges with the improved 
rate of convergence but steady-state error 
performance is poor than RLS. While SC-PRLS 
has better convergence rate, steady-state error 
performance and MSD in comparison to the RLS 
and PRLS algorithms.  
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Fig.1 Comparison of MSE for RLS, PRLS and SC-
PRLS  

 

Fig.2 Comparison of MSD for RLS, PRLS and SC-
PRLS. 

To analyze SC-PRLS for different sparse 
conditions like sparse, relatively less sparse and 
non-sparse, impulse responses were chosen 
accordingly. For sparse system, only 4 taps are 
active out of total 60 taps, these 4 taps assigned the 
value one. The input is random values of 0 or 1. 
For relatively less sparse system, 20 active taps are 
assigned different values in the range of 1 to 9. For 
non-sparse systems, all taps are nonzero and input 
is randomly generated.  

The performance of SC-PRLS for different sparse 
values is shown in in fig.3. The algorithm has 
consistency in rate of convergence but steady-state 
error increases from sparse to non-sparse systems. 
Mean square error converges near 230 iterations for 
all but steady-state error for sparse environment is 
nearly -59 dB, for relatively sparse -38dB, whereas 
non-sparse has -25 dB of steady-state error. SC-
PRLS performs better in both MSE and SSE for 
sparse systems and then steady-state error increases 
as system characteristics changes from sparse to 
non-sparse. In non-sparse environment also, the 
proposed algorithms have satisfactory performance.  

 

Fig.3 Mean Square Error variation of SC-PRLS for 
sparse, relatively less sparse and non-sparse 
system.  

When number of filter weights increases 
considerably, convergence rate decreases, however 
by decreasing ߤ, convergence rate can be improved 
without requirement of large input samples. If ߤ 
value is not chosen properly then the algorithm 
may also diverge instead of converging. Therefore, 
performance of SC-PRLS also depends on 
convergence control parameter ߤ and its effect on 
MSE is shown in fig.5 for fixed tap size and 
different values of ߤ. The convergence control 
parameter ߤ has a range for better performance of 
the algorithm.  

The rate of convergence decreases beyond this 
range and afterword algorithm stops converging. 
Observation of fig.4 indicates that the range of ߤ 
from 30-85 leads to better performance and below 
ߤ = 30 rate convergence decreases but steady-state 
error improves and keep on improving at the cost 
of convergence. After ߤ = 0.5 algorithm diverges 
instead of converging. If ߤ is increased beyond 85 
then convergence as well as steady-state error both 
deteriorate and after ߤ = 122, algorithm stops 
converging. Such variation is visible in fig.4, fig.5 
and fig.6. The graph of fig.5 shows the variation in 
steady-state error v/s ߤ for the proposed algorithm. 

  

Fig.4 MSE for SC-PRLS with fixed tap size for 
different values of ߤ   
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Fg.5 Steady-state error verses ߤ for SC-PRLS 

Change in convergence rate for different ߤ is 
clearly visible in Fig.6 and it helps to determine the 
optimum range for ߤ for which convergence rate is 
better. 

It was also observed that the range of ߤ decrease as 
the number of filter taps increase. During the 
experiment, number of filter weights were varied 
from 10 to 500. Better convergence rate is observed 
for the values of ߤ in the range of 80 to 20. When 
number of filter weights are 500, the algorithms 
diverge for 50= ߤ while the number of filter 
weights are 20 then the algorithms show better 
convergence for same value of ߤ. So, there is trade-
off between number of filter weights and rate of 
convergence. The wrong selection of ߤ leads to 
degradation of performance. The algorithm may 
diverge if ߤ is beyond upper bound. 

Proposed SC-PRLS compared to RLS and PRLS 
by varying the value of constant ߙ௦௖ and 
convergence controlling parameter ߤ. For ߙ௦௖ =
0.925, the SC-PRLS performs similar to RLS and 
for ߙ௦௖ = 0.4, it performs similar to PRLS. Further 
decrease in ߙ௦௖ ,  deteriorates the performance of 
the algorithm. optimum value ߙ௦௖ is 0.65 for better 
performance of SC-PRLS.  

 

Fig.6 Rate of convergence when ߤ is changes for 
SC-PRLS  

The SC-PRLS performs similar to PRLS at ߤ = 75 
and for ߤ > 75, PRLS is better than SC-PRLS, 
while SC-PRLS perform better than PRLS for 
28 < ߤ < 75. If ߤ is further decreases then steady-
state error is better than PRLS but rate of 
convergence is not better than PRLS. The optimum 
value of ߤ for SC-PRLS is 35 where MSE and 
steady-state error both are better than PRLS. 

Compared to RLS and PRLS, the proposed SC-
PRLS algorithm performs better in terms of steady-
state error performance and convergence rate. 

 

6. Conclusion  

The SC-PRLS algorithm is proposed by 
incorporating the degree of sparseness into the 
diagonal elements of the proportionate matrix of 
PRLS. This algorithm incorporates convergence 
control factor that can be adjusted to improve the 
steady-state error and rate of convergence 
whenever the number of weights is significant. 
Proposed SC-PRLS algorithm perform well in both 
sparse and non-sparse systems. As the degree of 
sparseness changes, the effect of the proportionate 
term and non-proportionate term in the algorithm 
varies accordingly. The simulation results indicate 
improved convergence of SC-PRLS over RLS and 
PRLS. Also, it has a better steady-state error. The 
steady-state error improves when the degree of 
sparseness increases. The simulation results also 
indicate the dependence of steady-state error and 
convergence on the control parameter. By choosing 
an appropriate value of the control parameter both 
can be improved. 
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