
Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5853

Task Scheduling Optimization in Cloud
Computing by Social Group Optimization

Algorithm

Ahmed Y. Hamed
Faculty of Computers and Artificial Intelligence,

Department of Computer Science, Sohag University, Sohag, 82524, Egypt
Email: ayhamedd@gmail.com

M. Kh. Elnahary
Faculty of Computers and Artificial Intelligence,

Department of Computer Science, Sohag University, Sohag, 82524, Egypt
Email: mk409055@gmail.com

Hamdy H. El-Sayed
Faculty of Computers and Artificial Intelligence,

Department of Computer Science, Sohag University, Sohag, 82524, Egypt
Email: hamdy2006x@gmail.com

---ABSTRACT---
In cloud computing systems, task scheduling is crucial. Task scheduling cannot be done based on a single
criterion but rather on rules and regulations that may be referred to as an agreement between cloud customers
and providers. This agreement is nothing more than the user's desire for the providers to offer the kind of service
that they expect. Providing high-quality services to consumers under the deal is a critical duty for providers, who
must also manage many responsibilities. The task scheduling problem may be considered the search for an ideal
assignment or mapping of a collection of subtasks of distinct tasks across the available set of resources to meet the
intended goals for tasks. This paper proposes an efficient scheduling task algorithm based on the social group
optimization of cloud computing systems. By applying it to three cases, we evaluate the performance of our
algorithm. The findings suggest that the proposed strategy successfully achieved the best solution in Makespan,
Speedup, Efficiency, and Throughput.

Keywords -Heterogeneous resources, Social Group Optimization Algorithm, Task scheduling, Cloud
Computing
--

Date of Submission: June 18, 2023 Date of Acceptance: August 06, 2023
--
1. INTRODUCTION

There is no single description of the cloud, but we may
explain it in various ways and techniques. Cloud
computing is supercomputing that may be accessed over
the internet. It is a shared infrastructure that links big
system pools using a variety of ways such as distributed
computing, virtualization, and so on. It offers clients a
variety of storage, networking, and computing capabilities
in the cloud computing environment over the internet,
allowing users to store a large quantity of information and
access a significant number of processing power using
their PCs [1]. The fundamental goal of cloud computing is
to manage computing power, storage, numerous platforms,
and services assigned to external users on an as-needed
basis over the internet. Cloud computing is a rapidly
growing computing paradigm that relieves cloud users of
the burden of managing hardware, software, networks, and
data resources by offloading them to cloud service
providers. Clouds provide diverse resources, such as
computing platforms, data centres, storage, networks,
firewalls, and software. Simultaneously, it provides

techniques for regulating these resources, allowing cloud
customers to use them without encountering any
performance concerns. Cloud Computing Services are
grouped into three forms based on the abstraction level
and the provider's service model: (1) Infrastructure as a
Service (IaaS), (2) Platform as a Service (PaaS), and (3)
Software as a Service (SaaS) (SaaS). The key
characteristics of cloud computing are distribution,
virtualization, and elasticity. Virtualization is a critical
component of the cloud. Virtualization is supported by the
great majority of software and hardware. We may
virtualize and manage diverse components under a cloud
platform, including hardware, software, storage, and
operating systems [1]. To solve the task scheduling
problem satisfactorily, we have presented an efficient
method based on a social group optimization algorithm
called the efficient social group optimization (ESGO) to
decrease the makespan and maximize the Speedup,
Efficiency, and Throughput.
The paper is organized as follows: The notations are
presented in section 2. Related work is presented in
Section 3. problem description is given in Section 4. The

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5854

social group optimization algorithm is given in Section 5.
Section 6 describes the ESGO approach. The evaluation of
the proposed algorithm is presented in section 7. Section 8
concludes and offers future work.

2. NOTATIONS

3. RELATED WORK
Cloud computing is a new technology that allows people
to pay as they go while still providing outstanding
performance. Cloud computing is a heterogeneous system
that holds many application data. When scheduling some
intense data or computing an intensive application, it is
widely understood that minimizing the transferring and
processing time is vital to an application programme. The
authors create a task scheduling model to lower processing
costs and suggest a particle swarm optimization (PSO)
approach based on this study's tiny position value rule [2].
Cloud computing has recently overgrown and has
established itself as a commercial reality in information
technology. Cloud computing is a supplement,
consumption, and delivery model for internet-based
Information Technology. The scheduling of cloud services
impacts the cost-benefit ratio of this computing paradigm
provided by service providers to customers. Tasks should
be efficiently planned in such a circumstance to reduce
execution costs and time. This study [3] proposed a meta-
heuristic-based scheduling strategy that minimizes
execution time and cost. An improved genetic algorithm is
built by integrating two current scheduling algorithms for
scheduling tasks while considering their computational
cost and processing power.
The efficiency with which infrastructure is constructed and
available resources are aggressively used will determine
the survival of the next generation of cloud computing.
One of the essential concerns in Cloud computing is load
balancing, which distributes the dynamic workload over
several nodes to ensure that no one resource is
overburdened or underutilized. This is an optimization
problem, and a skilled load balancer should adapt its
approach to the changing environment and task types. The
Genetic Algorithm is used in this study [4] to propose a
novel load balancing approach (GA).

Scheduling directed acyclic graph (DAG) tasks to reduce
makespan has emerged as a significant problem in various
heterogeneous computing applications, including task
execution order and task-to-processor mapping concerns.
The chemical reaction optimization (CRO) technique has
lately proven helpful in multiple industries. This paper [5]
creates an enhanced hybrid version of the HCRO (hybrid
CRO) approach to solve the DAG-based job scheduling
issue. In HCRO, the CRO technique is paired with novel
heuristic techniques, yielding a new selection strategy.
This study provides the following specific contributions.
(1) To discover the best local candidate solutions, a
Gaussian random walk approach is used. (2) the authors
use a left or right rotating shift technique based on
maximum Hamming distance to ensure the HCRO
algorithm can escape from local optima. (3) A novel
selection strategy based on the normal distribution and a
pseudo-random shuffling approach is presented to
conserve molecular diversity. Furthermore, an exclusive-
OR (XOR) operator is put between two strings to reduce
the potential of cloning before creating new molecules.
When high efficiency is required, job scheduling is one of
the essential considerations in various settings. Different
evolutionary strategies have been devised to handle this
because task scheduling is a Nondeterministic Polynomial
NP-hard problem. Due to the sluggish convergence rate of
population-based algorithms, they are paired with local
search algorithms. As a result, this work [6] proposes a
hybrid particle swarm optimization and hill-climbing
strategy to optimize task scheduling timeliness.
This study [7] developed a novel approach dubbed honey
bee behaviour inspired load balancing (HBB-LB), which
seeks to establish a well-balanced load across virtual
machines to maximize throughput. The proposed
technique also balances the priority of work on the
computers so that the amount of time spent waiting for
tasks in the queue is maintained to a minimum.

4. PROBLEM DESCRIPTION
The task scheduling in cloud computing is represented as a
Graph with NNS tasks (NS1, NS2, NS3, ..., NSNNS).
Each task represents a task with GR and E-directed edges,
signifying a portion of the tasks' requests [8]. Each node
represents an instruction that might be performed
sequentially on the same virtual machine alongside other
instructions; it contains one or more inputs. The task an
exit or entry task is triggered to execute based on the
availability of the inputs. A precedence-constrained partial
request result (NSi → NSj), i.e., NSi precedes NSj in the
process of execution. The execution time of a task NSi is
denoted by (NSi) weight. Let COM_COS(NSi, NSj) be the
cost of communication of an edge, and it will be equal to
zero if NSi and NSj are scheduled on the same virtual
machine. Start and finish times are denoted by
Str_Time(NSi, VRMj) and Fnt_Time(NSi, VRMj),
respectively [8]. The Dat_Arr of NSi at virtual machine
VRMj is given by:
Dat_Arr(NSi. VRMj) = max{Fnt_Time(NSk, VRMj) +
COM_COS(NSi, NSk)} (1)
Where k = 1.2, ..., number of Parents

GR It is the graph of tasks
NSi It is the task i

VRMi It is the virtual machine i
NVRM It is the virtual machine's number
NNS It is the number of tasks

COM_COS(NSi,
NSj)

It is the communication cost
between NSi and NSj

Str_Time(NSi,
VRMj)

It is the start time of task i on a
VRMj

Fnt_Time(NSi,
VRMj)

It is the finish time of task i on a
VRMj

Red_Time(VRMi) It is the V.M.'s ready time i

LIT It is a list of tasks arranged in
topological order of DAG

Dat_Arr(TSi,
VMj)

It is the time of task's i data arrival
to VRMj

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5855

The task scheduling issue in cloud computing may be
characterized as finding the optimal assignment or
schedule of the start times of the provided tasks on virtual
machines. The scheduled length (completion time) and
execution cost are reduced while keeping precedence
constrained. The completion time is defined as the
schedule length or finish time computed by:
Schedule Length = max(Fnt_Time(NSi, VRMj)) (2)
Fnt_Time(NSi, VRMj) = Str_Time(NSi, VRMj) +
WTij(3)
Where i = 1.2., NNS, and j = 1,2, …NVRM

Algorithm 1: To find the schedule length [8]
Input the schedule of tasks
Red_Time[VRMj] = 0 where j = 1, 2, ……NVRM.
For i = 1 : NNS
{
 From LIT take the first task NSi to be executed and
remove it from LIT.
 For j = 1 : NVRM
 {
 If NSi is scheduled to virtual machine VRMj
Str_Time(NSi, VRMj) = max{Red_Time(VRMj),
Dat_Arr(NSi, VRMj)}
 Fnt_Time(NSi, VRMj) = Str_Time(NSi, VRMj) +
WT(NSi, VRMj)
 Red_Time(VRMj) = Fnt_Time(NSi, VRMj)
 End If
 }
}
Schedule length = max(Fnt_Time)

5. SOCIAL GROUP OPTIMIZATION
In SGO [9], each individual (a potential solution) is
endowed with some knowledge and the ability to solve a
problem. SGO is a population-based algorithm similar to
the other algorithms outlined in the preceding section. For
SGO, the population is defined as a group of people
(candidate solutions). Everyone gains information and, as
a result, has some amount of problem-solving ability. This
corresponds to the 'fitness.' The best solution is the most
acceptable person. The best individual seeks to spread
information among all people, which improves the entire
group's knowledge level. The SGO technique is separated
into two sections. The first section is the 'improving
phase,' while the second part is the 'acquiring phase.' The
knowledge level of each member in the group is increased
during the 'improving phase,' thanks to the impact of the
best person in the group. The best member of the group is
the one with the most knowledge and ability to tackle the
problem. During the 'acquiring phase,' each individual
improves their knowledge by mutual engagement with
another member of the group and the best member of the
group. The following is a rudimentary mathematical
understanding of this notion.Let Zi, i= 1, 2, 3, . . .N be
members of a social group. The social group contains N
members, and every member Zi is defined by Zi = (Zi1, Zi2,
Zi3, . . . , ZiD), where D determines the dimensions of a

member and Qi, i= 1, 2, . . .N is their corresponding fitness
values, respectively.
Improving phase: The best member (Gbest) in each social
group attempts to disseminate information among all
individuals, assisting others in the group to increase their
knowledge. Hence, Gbest at generation g is equal min{ Qi ,
i = 1, 2, . . .N} for solving minimization problem. In the
improving phase, each person gets knowledge (here,
knowledge refers to the change of traits with the influence
of the best person's traits) from the group's best (Gbest)
person. The updating of each person can be computed as
follows [9]:

For i = 1 : N
 For j=1:D
 Znew(i,j) = e*Zold(i,j)+ran*(Gbest(j)− Zold(i,j))
(4)
 End for
End for
where ran is a random number, ran ~ U(0, 1)
Accept Znew if it gives a better fitness than Zold
where e is known as self-introspection parameter. Its value
can be set from 0 < e < 1.

Acquiring phase: In the acquiring phase, a person of a
social group interacts with the best person (Gbest) and
interacts randomly with other persons to acquire
knowledge. A person receives new knowledge if the other
person has more ability than them. The best
knowledgeable person (here known as a person having
'Gbest') has the most significant influence on others to learn
from them. A person will also acquire something new
from other persons if they have more knowledge than
them in the group. The acquiring phase is expressed as
given below [9]:

Gbest = min{Q (Zi), i = 1, 2, . . . N} (Zi's are updated
values at the end of the improving phase)
For i = 1 : N
Randomly select one person Zran , where i ≠ ran
 If Q (Zi) < Q (Zran)
 For j = 1 : D
 Znew(i, j) = Zold(i, j) + ran1 * (Z(i, j) – Z(ran, j) +
ran2 * (Gbest (j) - Z(i, j))
(5)
 End for
 Else
 For j = 1 : D
 Znew(i, :) = Zold(i, :) + ran1 * (Z(ran, :) – Z(i, :) +
ran2 * (Gbest (j) - Z(i, j))
(6)
 End for
 End If
Accept Znew if it gives a better fitness function value.
End for
where ran1 and ran2 are two independent random
sequences, ran1 ~ U(0, 1) and ran2 ~ U(0, 1)

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5856

6. THE PROPOSED ALGORITHM
It is clear that the representation of a vector in the social
group optimization algorithm is a continuous value form,
so we will use the five methods to convert these
continuous values to discrete values. The first is the
Smallest Position Value (SPV) rule [10], the second is the
Largest Position Value (LPV) rule [11], the third is the
round nearest function, and the fourth is the floor nearest
function, the fifth is Ciel nearest function. In the SPV and
LPV, we will use the modulus function with the number of
virtual machines and increase the result by one, as shown
in Table 1.
Table 1: convert continuous values to discrete values

Population 1.5 2.1 1.3 1.8 3.0 2.5 1.2
SPV rule 7 3 1 4 2 6 5

modulus with
SPV and

NVRM=3
2 1 2 2 3 1 3

LPV rule 5 6 2 4 1 3 7
modulus with

LPV and
NVRM=3

3 1 3 2 2 1 2

round nearest
function 2 2 1 2 3 3 1

floor nearest
function 1 2 1 1 3 2 1

ceil nearest
function 2 3 2 2 3 3 2

Algorithm 2: The function that converts a continuous
value to a discrete value
Function converting(s)
Rando=random number between [1…5]
If (Rando == 1)
 Use method of SPV rule
Else if (Rando == 2)
 Use method of LPV rule
Else if (Rando == 3)
 Use round nearest function
Else if (Rando == 4)
 Use floor nearest function
Else
 Use ceil nearest function
End if
End function

Algorithm 3: ESGO
Input the DAG with communication and computation cost
Initialize the parameters N(number of population),
D(dimension), e(self-introspection), uberbound,
lowerbound, and maximum iteration
Initialize the population by using
population(i,j)=lowerbound + ran*(uberbound-
lowerbound)
Convert the initial population by using Algorithm 2
Calculate the fitness of each population by using
Algorithm 1
While iteration <= maximum iteration

Identify the best solution Gbest
//Improving phase

For i = 1 : N
 For j=1:D
 Znew(i,j) = e*Zold(i,j)+ran*(Gbest(j)− Zold(i,j))
 End for
Convert the new solution by using Algorithm 2
Calculate the fitness of the new solution by using
Algorithm 1
 If (fitness of the new solution < fitness of the old
solution Zi)
 Update the old solution with the new obtained
solution
 Update the fitness of the old solution with the new
obtained solution
 End for
//Acquiring phase

Identify the best solution Gbest
For i = 1 : N
 Randomly select one person, Zran , where i ≠ ran
 If (the fitness of the solution Zi< the fitness of the
solution Zran)
 For j = 1 : D
 Znew(i, j) = Zold(i, j) + ran1 * (Z(i, j) – Z(ran, j) +
ran2 * (Gbest (j) - Z(i, j))
 End for
 Else
 For j = 1 : D
Znew(i, :) = Zold(i, :) + ran1 * (Z(ran, :) – Z(i, :) + ran2 *
(Gbest (j) - Z(i, j))
 End for
 End If
 Convert the new solution by using Algorithm 2
 Calculate the fitness of the new solution by using
Algorithm 1
 If (fitness of the new solution < fitness of the old
solution Zi)
 Update the old solution with the new obtained
solution
 Update the fitness of the old solution with the new
obtained solution
End for
Iteration= iteration+1
End while

7. EVALUATION OF ESGO
We demonstrate the ESGO's performance by applying it to
three different instances. The first scenario has eleven
tasks and three disparate virtual machines, and the second
instance is made up of ten tasks and three different virtual
machines. The third is made up of three disparate virtual
machines and eleven tasks. We set the Initialize the
parameters N(number of population)=100,
D(dimension)=number of tasks, e(self-
introspection)=0.25, uberbound=3, lowerbound=1, and
maximumiteration=100

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5857

1.2

1.25

1.3

1.35

1.4

1.45

CPOP HEFT MHEFT ESGO

Sp
ee

du
p

Speedup = min ୚ୖ୑.ౠ (∑
୛.୘.౟,ౠ

ୱୡ୦ୣୢ୳୪ୣ ୪ୣ୬୥୲୦୒.ୗ.౟) (7)

Efficiency = ୗ୮ୣୣୢ୳୮
୒୚ୖ୑

 (8)

Throughput = ୒୒ୗ
ୗୡ୦ୣୢ୳୪ୣ ୐ୣ୬୥୲୦

 (9)

Case 1: We investigate the scenario of eleven tasks {NS1,
NS2, NS3, NS4, NS5, NS6, NS7, NS8, NS9, NS10, NS11} that
will be run on three heterogeneous virtual machines
{VM1, VM2, VM3}. Table 1 [12] shows the cost of
completing each task on different virtual machines. Table
2 shows the start and finish times of each task on different
virtual machines and the ESGO schedule. Table 3 shows
the comparative results for makespan between ESGO and
other algorithms. The ESGO findings are compared to the
outcomes of HEFT [12], CPOP [12], and MHEFT [12].
Figures 1, 2, 3, and 4 show the results of the ESGO,
HEFT, CPOP, and MHEFT in terms of makespan,
speedup, efficiency, and throughput.

Table 1: Computation Cost for Case 1

Task VM1 VM2 VM3
NS1 16 19 27
NS2 18 15 13
NS3 21 12 22
NS4 15 13 11
NS5 22 19 20
NS6 13 09 11
NS7 8 11 16
NS8 14 23 10
NS9 28 32 12
NS10 15 13 09
NS11 14 16 22

Table 2: Schedule obtained by ESGO for case 1

 VM1 VM2 VM3
 Str_Ti

me
Fnt_T
ime

Str_Ti
me

Fnt_T
ime

Str_Ti
me

Fnt_T
ime

NS
1

0 16 - - - -

NS
2

- - - - 33 46

NS
3

- - 36 48

NS
4

38 53 - - - -

NS
5

16 38 - - - -

NS
6

- - 72 81

NS
7

- - - - 57 73

NS
8

- - - - 73 83

NS
9

- - - - 83 95

NS
10

- - 94 107 - -

NS
11

- - 107 123 - -

Table 3: the comparative results for case 1
Algorithm Makespan

CPOP 136
HEFT 134

MHEFT 133
ESGO 123

Figure 1: comparison of makespan for case 1

Figure 2: comparison of speedup for case 1

Figure 3: comparison of efficiency for case 1

Figure 4: comparison of throughput for case 1

115

120

125

130

135

140

CPOP HEFT MHEFT ESGO

M
ak

es
pa

n

0.4

0.42

0.44

0.46

0.48

CPOP HEFT MHEFT ESGO

Ef
fic

ie
nc

y

0.075

0.08

0.085

0.09

CPOP HEFT MHEFT ESGO

Th
ro

ug
hp

ut

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5858

Case 2:We investigate the scene of ten tasks {NS0, NS1,
NS2, NS3, NS4, NS5, NS6, NS7, NS8, NS9} that will be run
on three heterogeneous virtual machines {VM1, VM2,
VM3}. Table 4 [5] shows the cost of completing each task
on different virtual machines. Table 5 shows the start and
finish times of each task on different virtual machines and
the ESGO schedule. Table 6 shows the comparative results
for makespan between ESGO and HCRO [5]. The ESGO
findings are compared to the outcomes of HCRO. Figures
5, 6, 7, and 8 show the results of the ESGO and HCRO in
terms of makespan, speedup, efficiency, and throughput.

Table 4: Computation Cost for Case 2

Task VM1 VM2 VM3
NS0 10 11 11
NS1 9 10 8
NS2 8 6 8
NS3 10 10 9
NS4 13 12 13
NS5 3 2 4
NS6 10 8 9
NS7 2 2 2
NS8 18 17 16
NS9 15 14 14

Table 5: Schedule obtained by ECS for case 3
VM1 VM2 VM3

Str_Ti
me

Fnt_Ti
me

Str_Ti
me

Fnt_Ti
me

Str_Ti
me

Fnt_Ti
me

N
S0

- - - - 0 11

N
S1

13 22 - - - -

N
S2

- - - - 11 19

N
S3

- - - - 19 28

N
S4

- - 12 24 - -

N
S5

- - 25 27 - -

N
S6

27 37 - - - -

N
S7

- - 30 32 - -

N
S8

- - - - 28 44

N
S9

- - - - 44 58

Table 6: the comparative results for case 2

Algorithm Makespan

HCRO 61

ESGO 58

Figure 5: comparison of makespan for case 2

Figure 6: comparison of speedup for case 2

Figure 7: comparison of efficiency for case 2

Figure 8: comparison of throughput for case 2

Case 3:We investigate the scenario of eleven tasks {NS0,
NS1, NS2, NS3, NS4, NS5, NS6, NS7, NS8, NS9, NS10} that
will be run on three heterogeneous virtual machines

56

57

58

59

60

61

62

HCRO ESGO

M
ak

es
pa

n
1.46
1.48

1.5
1.52
1.54
1.56
1.58

1.6

HCRO ESGO
Sp

ee
du

p

0.48

0.49

0.5

0.51

0.52

0.53

HCRO ESGO

Ef
fic

ie
nc

y

0.155

0.16

0.165

0.17

0.175

HCRO ESGO

Th
ro

ug
hp

ut

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5859

{VM1, VM2, VM3}. Table 7 [13] shows the cost of
completing each task on different virtual machines. Table
8 shows the start and finish times of each task on different
virtual machines and the ESGO schedule. Table 9 shows
the comparative results for makespan between ESGO and
other algorithms. The ESGO findings are compared to the
outcomes of Upward Rank [14], Downward Rank [14],
Level Rank [14], BGA [15], and GA DE HEFT [13].
Figures 9, 10, 11, and 12 show the outcomes of the ESGO,
Upward Rank, Downward Rank, Level Rank, BGA,
GA_DE_HEFT in terms of makespan, speedup, efficiency,
and throughput.

Table 7: Computation Cost for case 3

Task VM1 VM2 VM3
NS0 9 11 10
NS1 11 7 9
NS2 8 6 4
NS3 6 5 7
NS4 9 17 10
NS5 7 5 9
NS6 12 15 9
NS7 17 12 13
NS8 8 12 10
NS9 16 15 14
NS10 11 10 12

Table 8. Schedule obtained by ESGO for case 3
 VM1 VM2 VM3

 Str_T
ime

Fnt_
Time

Str_T
ime

Fnt_
Time

Str_T
ime

Fnt_T
ime

NS0 0 9 - - - -
NS1 - - 21 28 - -
NS2 - - - - 23 27
NS3 9 15 - - - -
NS4 - - 35 52 - -
NS5 - - - - 27 36
NS6 15 27 - - - -
NS7 - - 53 65 - -
NS8 43 51 - - - -
NS9 27 43 - - - -
NS10 - - 66 76 - -

Table 9: the comparative results for case 3
Algorithm Makespan

Upward Rank 88
Downward Rank 87

Level Rank 87
BGA 85

GA_DE_HEFT 78
ESGO 76

Figure 9: comparison of makespan for case 3

Figure 10: comparison of speedup for case 3

Figure 11: comparison of efficiency for case 3

Figure 12: comparison of throughput for case 3

70
75
80
85
90

M
ak

es
pa

n

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

Sp
ee

du
p

0.36
0.38

0.4
0.42
0.44
0.46
0.48

Ef
fic

ie
nc

y

0.115
0.12

0.125
0.13

0.135
0.14

0.145
0.15

Th
ro

ug
hp

ut

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 02 Pages: 5853– 5860 (2023) ISSN: 0975-0290

5860

8. CONCLUSION AND FUTURE WORK
The proposed efficient social group optimization
algorithms allocate or schedule subtasks to available
virtual machines in a cloud computing environment.
According to the obtained results on DAGs of different
cases, the efficient social group optimization algorithms
are significantly more effective than other algorithms in
terms of makespan, speedup, efficiency, and throughput.
In the future, we will develop an algorithm based on
DAGs by considering the load balancing of the resources.

REFERENCES
[1] R.M. Singh, S. Paul, A. Kumar, Task Scheduling in

Cloud Computing : Review, 5 (2014) 7940–7944.
[2] L. Guo, S. Zhao, S. Shen, C. Jiang, Task scheduling

optimization in cloud computing based on heuristic
Algorithm, J. Networks. 7 (2012) 547–553.
https://doi.org/10.4304/jnw.7.3.547-553.

[3] S. Kaur, A. Verma, An Efficient Approach to
Genetic Algorithm for Task Scheduling in Cloud
Computing Environment, Int. J. Inf. Technol.
Comput. Sci. 4 (2012) 74–79.
https://doi.org/10.5815/ijitcs.2012.10.09.

[4] K. Dasgupta, B. Mandal, P. Dutta, J.K. Mandal, S.
Dam, A Genetic Algorithm (GA) based Load
Balancing Strategy for Cloud Computing, Procedia
Technol. 10 (2013) 340–347.
https://doi.org/10.1016/j.protcy.2013.12.369.

[5] Y. Xu, K. Li, L. He, L. Zhang, K. Li, A Hybrid
Chemical Reaction Optimization Scheme for Task
Scheduling on Heterogeneous Computing Systems,
IEEE Trans. Parallel Distrib. Syst. 26 (2015) 3208–
3222. https://doi.org/10.1109/TPDS.2014.2385698.

[6] N. Dordaie, N.J. Navimipour, A hybrid particle
swarm optimization and hill climbing algorithm for
task scheduling in the cloud environments, ICT
Express. 4 (2018) 199–202.
https://doi.org/10.1016/j.icte.2017.08.001.

[7] L.D. Dhinesh Babu, P. Venkata Krishna, Honey bee
behavior inspired load balancing of tasks in cloud
computing environments, Appl. Soft Comput. J. 13
(2013) 2292–2303.
https://doi.org/10.1016/j.asoc.2013.01.025.

[8] A.Y. Hamed, M.H. Alkinani, Task scheduling
optimization in cloud computing based on genetic
algorithms, Comput. Mater. Contin. 69 (2021) 3289–
3301. https://doi.org/10.32604/cmc.2021.018658.

[9] S. Satapathy, A. Naik, Social group optimization
(SGO): a new population evolutionary optimization
technique, Complex Intell. Syst. 2 (2016) 173–203.
https://doi.org/10.1007/s40747-016-0022-8.

[10] I. Dubey, M. Gupta, Uniform mutation and SPV rule
based optimized PSO algorithm for TSP problem,
Proc. 2017 4th Int. Conf. Electron. Commun. Syst.
ICECS 2017. 17 (2017) 168–172.
https://doi.org/10.1109/ECS.2017.8067862.

[11] L. Wang, Q.K. Pan, M.F. Tasgetiren, A hybrid
harmony search algorithm for the blocking
permutation flow shop scheduling problem, Comput.
Ind. Eng. 61 (2011) 76–83.

https://doi.org/10.1016/j.cie.2011.02.013.
[12] K. Dubey, M. Kumar, S.C. Sharma, Modified HEFT

Algorithm for Task Scheduling in Cloud
Environment, Procedia Comput. Sci. 125 (2018)
725–732.
https://doi.org/10.1016/j.procs.2017.12.093.

[13] A. Kamalinia, A. Ghaffari, Hybrid Task Scheduling
Method for Cloud Computing by Genetic and DE
Algorithms, Wirel. Pers. Commun. 97 (2017) 6301–
6323. https://doi.org/10.1007/s11277-017-4839-2.

[14] H. Topcuoglu, S. Hariri, M.Y. Wu, Performance-
effective and low-complexity task scheduling for
heterogeneous computing, IEEE Trans. Parallel
Distrib. Syst. 13 (2002) 260–274.
https://doi.org/10.1109/71.993206.

[15] S. Gupta, G. Agarwal, V. Kumar, Task scheduling in
multiprocessor system using genetic algorithm,
ICMLC 2010 - 2nd Int. Conf. Mach. Learn. Comput.
(2010) 267–271.
https://doi.org/10.1109/ICMLC.2010.50.

Biographies and Photographs

A. Younes received his PhD degree in
Sept. 1996 from South Valley
University, Egypt. His research
interests include Artificial Intelligence
and genetic algorithms; specifically, in
the area of computer networks.
Recently, he has started conducting a

research in the area of Image Processing. Currently, he
works as an Professor SohagUniversity, Egypt. Younes
always publishes the outcome of his research in
international journals and conferences.

M. Kh. Elnahary Received the B.S
degree from computer science
department, SohagUniversity, Egypt.
His interests in task scheduling and
computer networks.

Hamdy H. El-Sayed Received the PhD
degree in wireless ad hoc network
routing protocols from computer
science department sohag university
Egypt march ,2015. His research
interests are in the areas of ad hoc
routing protocols and sensor networks,

Internet of Things, cloud computing and security.

