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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
Voice activity detection (VAD), which identifies speech and non-speech durations in speech signals, is a challenging 
task under noisy environment for various speech applications. In this paper, we propose a Gated Recurrent Unit 
(GRU) based VAD using MFCCs augmented delta and delta-delta features under the low signal-to-noise ratios 
(SNRs) environments to overcome the shortages of the traditional VAD models. We compare the proposed method 
with the traditional methods by using speech signals smeared with 10 types of noise at low SNRs. Experimental 
results reveal that the proposed method based on GRU is superior to traditional method under all the considered 
noisy environments, indicating that the network based on GRU improve the performance of speech detection. 
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1. INTRODUCTION 

Voice activity detection (VAD), which identifies speech 
and non-speech periods, is an important front-end step for 
various speech applications, including speech coding, 
enhancement, recognition and smart elevator and so on. For 
example, in speech enhancement and in spectral 
subtraction, speech/non–speech detection, which is applied 
to detect the signal periods that contain only noise, is used 
in the noise reduction process [1]. In the digital cellular 
telecommunication systems VAD is applied to detect 
non-speech frames, thus reduce average bit rates [2]. VAD 
is also a very useful technique for improving the 
performance of speech recognition systems [3]. 
 
In prior studies, VAD which take simple acoustic features 
such as energy and zero crossing rates for detecting speech 
periods, is suitable for clean signals, but its performance is 
degraded under noisy environments [4]. However, in 
various real-life applications, speech signals are always 
corrupted by the background noises, which cause those 
simple VAD algorithms to degrade dramatically. 
 
For VAD, a large amount of research under strong noisy 
conditions has been done [5]. All these methods utilize 

input such as spectrum-based feature, cepstrum-based 
features, fundamental frequency-based feature, entropy and 
harmonic and energy-based features. For example, the 
long-term spectral divergence between voice and noise 
were employed in [6], [7]. A VAD algorithm proposed in 
[8] measures the periodic to aperiodic component ratios to 
detect speech and non-speech period. In [9], a method 
based on a Gaussian statistical model is proposed by Sohn 
et al, where the decision rule is derived from the mean of 
the likelihood ratio for individual frequency bands by 
assuming that the noise is already known. The drawback of 
this methods performs well under stationary noise, but their 
performance is degraded under non-stationary noise. 
 
The performance of VAD using machine learning methods 
is superior to previous methods. For example, SVM 
methods Error! Reference source not found. and deep 
neural networks (DNNs) based methods Error! Reference 
source not found., Error! Reference source not found. 
have been found that its performance is better with 
traditional VAD. 
 
Recently, with the advent of artificial neural networks 
(ANNs) in the form of deep learning algorithms, neural 
network-based VAD has become very popular. In [15], 
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Espi et al proposed convolutional neural network (CNN), 
which utilized spectro-temporal features as the input, to 
detect non-speech acoustic signals. A deep maxout DNN 
was proposed to improve the VAD performance [16]. 
Zhang et al [17] utilized the combination of multiple 
features, such as MFCCs, pitch, DFT and so on, as the input 
to DNN to optimize the capability of DNN-based VAD. 
 
With the development of deep learning, especially CNN 
[18], [19] and recurrent neural networks (RNN)[20]-[22] 
based VAD have used in successful applications. Recent 
works in VAD have focused to improve the robustness 
towards noise where the training data have smeared with 
noise by corrupting clean speech with foreground or 
background noise. 
 
The prior VAD algorithms are based on the assumption of 
quasi-stationary noise, which means the noisy signal 
changes much slower than the speech signal. Also these 
algorithm makes the decisions from the current. The 
statistical VAD are based on the assumption that the 
frequency bins in one frame are statistically independent. 
However, there are noise signals such as clapping and 
clanks that change faster than the speech signal. The 
frequency bins in the same frame can be utilized by 
processing them together from highly correlation of the 
consecutive audio frames. Still, this assumptions mentioned 
above, which work well in all speech processing system. 
 
However, the main drawback of DNN for detecting speech 
is that they ignore the local temporal and spectral 
correlation in the speech features. The drawback of CNN in 
modeling speech signals is that it doesn’t consider long term 
temporal dependencies. Thus, DNN and CNN are not 
suitable for time series signal processing task. In many 
sequence modeling tasks, especially speech recognition, 
machine translation and language modeling [23], RNNs 
have shown superior performance. The reason is that RNNs 
not only utilize the temporal relation between the input 
signals, but also consider the long-term dependencies.  
 
GRU (Gate Recurrent Unit) is a variant of RNN and better 
than LSTM. Some experiment results on small datasets 
show that the GRU are faster to train and less to diverge 
than LSTM. Motivating this, we proposed a deep neural 
network for VAD based on GRU. 
 
The main contributions of our paper are as follows. First, 
we propose a deep neural network for VAD. The extracted 
MFCC features augmented delta and delta-delta from past 
frames are fed to neural network and give decision whether 
current frame is speech or not. We construct network with 
TDNN and GRU with good advantage for exploring the 
temporal relation and long-term dependency effectively. 
Second, we trained this network in a supervised method and 
evaluated in various noises under low SNRs environments 
with other methods. The rest of this paper is organized as 
follows. In Section 2, we describe the proposed neural 
networks for VAD using speech dynamics. In Section 3, we 

provide the experimental results and discussion of the 
results. Finally, we give the conclusions. 

2. PROPOSED METHOD 

2.1 FEATURE EXTRACTION 
Every utterance has a continuous speech duration which 
has a start and an end. For VAD, it is important to detect a 
start point and end point of speech signal. It is simple for 
clean speech (SNR is greater than 30dB) but the 
performance is degraded under noisy environment. We 
utilize delta and delta-delta of log energy of the frame for 
detecting the candidate of start point and end point. 
 
For VAD, it is essential to extract speech feature from 
speech signal. Experimental Result shows that speech 
dynamics, such as delta and delta-delta cepstrum, are more 
effective for modeling speech. MFCC (Mel-frequency 
cepstral coefficients) is an acoustic feature, which mimics 
well the production and reception system of human speech. 
The human ear receives frequencies less than 1 KHz at 
linear scale, but receives frequencies higher than 1 KHz at 
logarithmic scale. MFCCs uses the property of human ear, 
thus we take this as acoustic feature. Equation (1) shows 
Mel scale. 
 

)700/1ln(1125)( ffm   (1) 
 
Adding delta and delta-delta features, which are computed 
as the 1st and 2nd order derivation of MFCCs, the better 
result can be obtained. We didn’t consider the 3rd 
derivation of MFCCs since it has no improvement of 
speech recognition. That is why delta and delta-delta 
cepstra are features that express dynamics referring to the 
time-varying properties of speech signals [24]. In result we 
consider 39 dimensional features, 13 MFCCs augmented 
with delta and delta-delta features. The sampling rate of 
signal is 16 KHz. 
 
The input signals are divided into frames whose length is 
20ms. The segment consisting of past frames is framed into 
overlapping frames of length l (20ms) with a stride (10ms) 
by using Hamming window, giving a total ofN=(L-l)/s+1 
frames. From each frame, 39-dimentional MFCCs 
augmented delta and delta-delta features are extracted, we 
generate a total of  N×F features for the input signal 
segment of length L. In this way we obtain a set of 
frequency-domain spectral coefficients from time-domain 
speech signals. 
 
After getting the MFCC matrix in segments, the extracted 
features which are fed to neural network, are normalized to 
zero mean and unit standard deviation. It makes decision 
for the current frame i.e. voice and non-voice. 
 
Because the VAD is a binary classifier, it outputs for each 
frame a binary vector whose elements are determined as 1 
or 0. 
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After performing hang-over scheme, we get final VAD 
output series consisting of 1s (ones) representing the speech 
and 0s representing the non-speech. 

2.2 GRU-BASED VAD 
Fig. 1, 2 and 3 shows the proposed method, the structure of 
GRU unit and the architecture of the proposed neural 
network, respectively. 
 

 
Fig. 1. Proposed method pipeline 

 
Fig.2. Structure of GRUunit 

DNN in [24] is composed of five layers of RBMs. Out 
method use two RNN layers instead of 2 RBM layers. 
 
The Gated Recurrent Unit (GRU), which is widely used in 
many areas, is another variant of traditional RNN [25]. 
GRU, which uses fewer parameters than LSTMs [26], [27], 
is used as the base cell for recurrent layers. Since the input 
gate and the forget gate in LSTM are combined into one 
gate operation, it has a simpler structure of gate operations 
than that of LSTM. One hidden node of GRU is consisted 
of the candidate activation g and two kinds of gate 
operations such as the reset gate r and the update gate z. 
 
It consists of 5 time-delayed deep neural network (TDNN) 
layers and 2 stacked GRU layers. Three TDNN layers is at 
the bottom, which are followed by GRU [25], [28]. The 
DNN layer has 256 units and the activation function of each 
DNN is Rectified Linear Unit (ReLU). The feature matrix 
from sequence are fed to first DNN layer as input. The 
output followed by ReLU is inputted to second DNN layer. 
The output of second layer is fed to third DNN layer. The 
output of third DNN are fed to RNN layer, where RNN cell 
is GRU. The unit of this layer is 256. The output of RNN is 
fed to fully-connected layer, which give probability of 
speech. Here, the recurrent layer of RNN is bi-directional 
[29], [30].  

The context specification of each TDNN layer is as follows. 
The input tx1  at time t of 1st TDNN layer is determined 
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The output of 3rd TDNN is fed to two stacked GRU layers. 
The output of GRU layers is fed fully-connected layer and 
give VAD decision of the frame finally. 
 
Since the weights of RNNs are reused across all the   time 
steps, the RNNs have less number of parameters than 
DNNs. We applied layer normalization Error! Reference 
source not found. to be beneficial for training GRUs. 
During each time step the hidden states of GRU layers are 
normalized. 
 
After determining the speech and non-speech of frames, we 
performed hangover method. We determined as silence 
segment if the number of consecutive frames labeled 0 is 
greater than 15(0.3seconds length). Else we set all these 
frames labeled 0 as voice frame. 
 

 
Fig.3. Architecture of Neural Network for VAD 
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3. EXPERIMENTAL RESULTS AND 
DISCUSSION  

3.1 DATASET AND EXPERIMENTAL SETUP 
In the experiments, we use speech files from TIMIT [32]. In 
TIMIT corpus, every utterance are clean speech. The size of 
the dataset is about 12GByte and the size of the records is 
1.56*1000000.Single utterance contains a small number of 
non-speech periods so that it is difficult to evaluate a VAD 
algorithm accurately. After concatenating a number of 
utterances which was chosen randomly from every 
collections of utterances into a single recording, we 
appended a few seconds of silence at the beginning of 
utterance. Also silence was appended at the ending and 
junctions of the utterances. To equalize the power we 
normalized the amplitudes of each utterance. 
 
Let  Ra be the audio signals. Then we obtained the 
initial labels (if speech is 1else 0) of every frames of 
utterance by VAD which utilized simple energy. Our 
proposed method performs a frame by frame classification 
for VAD, we only consider T past frames. We construct 
from audio signal a dataset of overlapping frames by 
concatenating consecutive frames into sequence of lengthT. 
We labeled each sequence according to the label (1 or 0) of 
the last frame of the sequence because only past frames are 
used for classification. That is, the sequences i

aS  
containing audio frames are labeled to the label of the i-th 
frame of the signal.  
 
Also, we used a collection of a large number of different 
noise signals from [33]. To obtain noisy signals, the clean 
speech files were mixed with ten types of noises from 
NOISEX-92 [30]. Each segment consisted of 30 frames, 
which means input vector has a hundred of elements. Each 
noise signal is differently selected for the speech files with 
SNRs at 10, 5, 0, and −5dB. 
 
The noise types used in this evaluation are as follows: 
factory 1, leopard, m109, buccaneer1, buccaneer2, babble, 
machinegun, hfchannel, white and pink. Others are 
non-stationary except pink and white noise. We smeared 
noises to speeches at a desired SNR using MATLAB. Thus, 
we create a dataset of clean/noisy pairs for training. 
 
We divided these pairs 80%/10%/10% into 
training/dev/test set. During training the parameters of 
model was estimated in development sets and the 
performance was evaluated in test sets. 
 
Our network was trained in TensorFlow Framework using 
the weighted cross-entropy and Adam optimizer [34]. All 
weights of network were initialized with values from a 
Xavier initializing scheme. The model is trained for 10K 
iterations with a batch size of 100. The initial learning rate 
is 5×104 and reduced 5 times after each 2K iterations. We 
use dropout with the probability of 0.5 on the output. We 
also use batch normalization on audio output. After training, 
the performance of the model is evaluated on the test set. 

3.2 RESULTS AND DISCUSSION 
To compare the performance of our method, some 
traditional VAD methods, such as LTSD [5], LTPD [6], 
LSFM [7], Sohn [9] and DNN-based VAD [24] which have 
been known as noise robust method, are taken for 
comparison. Also we compared the performance of these 
neural networks for VAD under ten noises with SNRs at 
10dB, 5dB, 0dB and -5dB. 

 
To compare the performance of the different methods, the 
receiver operation characteristic (ROC) curve, which 
represents the classification capability, is taken. The TPR 
and FPR are defined as follows: 
 

TNFP
FPFPR

FNTP
TPTPR





 ,

                               (2)
 

 
, where TP means true positive, FP means false positives, 
FN means false negatives, and TN means true negatives. 
 
However, TPR and FPR are multiple number evaluation 
metric. To get the quantitate value of ROC of various VAD 
methods, the area under the curves (AUCs), which are the 
main single-number evaluation metric, are calculated. 
Table 1 shows the average AUCs under ten type’s noises 
under -5dB SNR of various methods and neural network 
based VAD algorithm. 

 

Table. 1. AUC comparisons of the evaluated 

algorithms under -5dB SNR 

 Sohn LTSD LSFM LTPD FNN Proposed 

Factory1 0.5538 0.5978 0.7113 0.8998 0.8261 0.9286 

Leopard 0.9608 0.8721 0.9623 0.9435 0.9883 0.9999 

m109 0.9182 0.8498 0.8561 0.8696 0.6597 0.8331 

buccaneer1 0.7612 0.8471 0.7921 0.9382 0.9389 0.9441 

buccaneer2 0.8162 0.8794 0.9086 0.9495 0.9022 0.9526 

Babble 0.7687 0.8556 0.6873 0.7788 0.6712 0.8629 

hfchannel 0.8814 0.9134 0.8626 0.9312 0.9049 0.9283 

car 0.5934 0.7860 0.3423 0.9380 0.9611 0.9944 

Pink 0.7802 0.8609 0.8777 0.9481 0.8902 0.9662 

White 0.8601 0.8901 0.9096 0.9521 0.9853 0.9895 

Average 0.8172 0.8532 0.8352 0.9213 0.9228 0.9401 

 
As shown in Table 1, GRU based VAD is better than 
traditional and DNN based VAD. Especially the AUC of 
GRU based VAD improves by 2~15% than Sohn, LTSD, 
LSFM and LTPD. Also it improves by 7~9% than DNN. 
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To evaluate the performance, we also measured the TPR 
(sensitivity) and TNR (specificity). In VAD problem, 
Sensitivity (Speech hit rate) means the percentage of the 
frames correctly classified as speech among all the speech 
frames, and specificity (Non-speech hit rate) means the 
percentage of the frames correctly classified as non-speech 
among all the non-speech frames [35]. 
 
Table 2 shows the mean TPR and TNR for SNR levels 
range from -5dB to 10dB. As shown in the table, the GRU 
based method has a high sensitivity and specificity than 
traditional methods and DNN. Interestingly, the 
performance of the GRU-based VAD method outperforms 
the others in finding speech, particularly for low SNRs and 
non-stationary cases. 
 

Table. 2. Average speech/non-speech hit rates for 

SNR levels range from -5dB to 5dB 

 Sohn LTSD LSFM LTPD FNN GRU-RNN 

TPR(HR1) (%) 94.25 98.28 87.77 94.23 90.47 94.96 

TNR(HR0)(%) 59.80 38.92 76.00 87.77 89.45 92.30 

 

 
Fig. 4. Comparison of AUC with different methods under 

-5dB SNR 
 

 
Fig. 5. Speech/non-speech hit rates of the evaluated 

algorithms under different SNR levels 
 

In Fig. 4, we show the comparison result of different 
methods. Fig. 5 shows the speech/non-speech hit rates of 
the proposed method based GRU and traditional VAD 
methods respectively. As shown in the above figures, the 
GRU-based method shows an advantage over the other 
VAD methods. The GRU based VAD is more effective for 
low SNR cases. In the cases of stationary noise, such as 
white and pink noise, these methods achieve a high TPR 
and a low FPR. In the cases of non-stationary noise, such as 
babble and m109 noise, the AUC of the GRU-based 
method is higher than others by 9~11%. 
 
Totally, the performance of the GRU based VAD is 
superior to that of the traditional methods and DNN based 
VAD method mainly due to considering the relation of 
consecutive frames and bins. 

4. CONCLUSIONS 
In this paper, a VAD algorithm based on GRU neural 
network for improving the performance of VAD was 
presented, We determine whether current frame is speech 
or non-speech frame from the past frames. The extracted 
MFCCs with delta and delta-delta features of segment are 
fed to deep network. After performing hang-over method, 
we obtain the final VAD. To evaluate the performance of 
the proposed method, speech signals smeared with ten 
kinds of noise, such as white, babble, factory, car, pink and 
so on were tested at SNRs of 10, 5, 0, and -5dB. 
 
The experimental results show that the neural network 
based on GRU, reflecting the time series characteristics of 
the speech signal, is more effective than other methods for 
VAD under considered noisy conditions. 

REFERENCES 
[1] S.F. Boll, Suppression of Acoustic Noise in Speech 

Using Spectral Subtraction, IEEE Transactions on 
Acoustics, Speech and Signal Processing, 27(2), 1979, 
113-120. 

[2] A. Benyassine, E. Shlomot, H.Y. Su, D. Massaloux, C. 
Lamblin, and J.P. Petit, ITU-T Recommendation G.729 
Annex B: a Silence Compression Scheme for Use with 
G.729 Optimized for V.70 Digital Simultaneous Voice 
and Data Applications, IEEE Communications 
Magazine, 35(9), 1997,64-73. 

[3] S.B. Tong, N.X. Chen, Y.M. Qian, and K. Yu, 
Evaluating Vad for Automatic Speech Recognition, 
Proc. 12th International Conf. on Signal Processing, 
Hangzhou, PRC, 2014,2308–2314. 

[4] L. Rabiner, and M.R. Sambur, An Algorithm for 
Determining the Endpoints of Isolated Utterances, Bell 
System Technical Journal, 54(2), 1975,297-315. 

[5] J. Ramirez, J.C. Segura, C. Benitez, A.de la Torre, and 
A. Rubio, Efficient Voice Activity Detection 
Algorithms Using Long-Term Speech Information, 
Speech Communication, 42(3-4), 2004,271-287. 

[6] X.K. Yang, L.He, D. Qu, and W.Q. Zhang, Voice 
Activity Detection Algorithm Based on Long-Term 



Int. J. Advanced Networking and Applications   
Volume: 15 Issue: 02    Pages: 5831 – 5836  (2023) ISSN: 0975-0290 

5836 

Pitch Information, EURASIP Journal on Audio, Speech 
and Music Processing, 2016:14, 2016,1-9. 

[7] Y.N. Ma, and A. Nishihara, Efficient Voice Activity 
Detection Algorithm Using Long-Term Spectral 
Flatness Measure, EURASIP Journal on Audio, Speech 
and Music Processing, 2013:21, 2013,1-18. 

[8] K. Ishizuka, T. Nakatani, M. Fujimoto, and N. Miyazak, 
Noise Robust Voice Activity Detection Based on 
Periodic to Aperiodic Component Ratio, Speech 
Communication, 52(1), 2010,41-60. 

[9] J.S. Sohn, N.S. Kim, and W.Y. Sung, A Statistical 
Model-Based Voice Activity Detection, IEEE Signal 
Processing Letters, 6(1), 1999,1-3. 

[10] E.Q. Dong, G.Z. Liu, Y.T. Zhou, and X.D. Zhang, 
Applying Support Vector Machines to Voice Activity 
Detection, Proc. 6th International Conf. on Signal 
Processing, Beijing, PRC, 2002,1124–1127. 

[11] T. Kinnunen, E. Chernenko, M. Tuononen, P. Fränti, 
and H.Z. Li,Voice Activity Detection Using MFCC 
Features and Support Vector Machine,Proc. 
International Conf. on Speech and Computer, 
2007,556–561. 

[12] Q.H. Jo, J.H. Chang, J.W. Shin, and N. S. Kim, 
Statistical Model-Based Voice Activity Detection 
Using Support Vector Machine, IET Signal Processing, 
3(3), 2009,205-210. 

[13] G. Ferroni, R. Bonfigli, E. Principi, S. Squartini, and F. 
Piazza, A Deep Neural Network Approach for Voice 
Activity Detection in Multi-Room Domestic Scenarios, 
Proc. International Joint Conf. on Neural Networks, 
Killarney, IRELAND, 2015,1–8. 

[14] X.L. Zhang, and D.L. Wang, Boosting Contextual 
Information for Deep Neural Network Based Voice 
Activity Detection, IEEE/ACM Transactions on Audio, 
Speech and Language Processing, 24(2), 2016,252-264. 

[15] M. Espi, M. Fujimoto, K. Kinoshita, and T. Nakatani, 
Exploiting Spectro-Temporal Locality in Deep 
Learning Based Acoustic Event Detection, EURASIP 
Journal on Audio Speech and Music Processing, 
2015:26, 2015,1-12. 

[16] S.M. Valentin, N.P. Tatiana, and A.P. Alexey, Robust 
Voice Activity Detection with Deep Maxout Neural 
Networks, Modern Applied Science, 9(8), 
2015,153-159. 

[17] X.L. Zhang, and J.Wu, Deep Belief Networks Based 
Voice Activity Detection, IEEE Transactions on Audio, 
Speech and Language Processing, 21(4), 2013,697-710. 

[18] S.Y. Chang, B.Li, G. Simko, T.N. Sainath, A. Tripathi, 
A. van den Oord, and O. Vinyals, Temporal Modeling 
using Dilated Convolution and Gating for 
Voice-Activity-Detection,Proc. IEEE International 
Conf. on Acoustics, Speech and Signal Processing, 
Calgary, CANADA, 2018,5549–5553. 

[19] A. Sehgal, and N. Kehtarnavaz, A Convolutional 
Neural Network Smartphone App for Real-Time Voice 
Activity Detection, IEEE Access, 21, 2018,9017-9026. 

[20] M. Lavechin, M.P. Gill, R. Bousbib, H. Bredin, and 
L.P. Garcia-Perera, End-to-End Domain-Adversarial 
Voice Activity Detection,Proc. Conference of the 

International Speech Communication Association, 
Shanghai, PRC, 2020,3685–3689. 

[21] T.J. Xu, H. Zhang, and X.L. Zhang, Polishing the 
Classical Likelihood Ratio Test by Supervised Learning 
for Voice Activity Detection,Proc. Conference of the 
International Speech Communication Association, 
Shanghai, PRC, 2020,3675–3679. 

[22] Z.P. Zheng, J.Z. Wang, N. Cheng, J. Luo, and J. Xiao, 
MLNET: an Adaptive Multiple Receptive-Field 
Attention Neural Network for Voice Activity 
Detection,Proc. Conference of the International Speech 
Communication Association, Shanghai, PRC, 
2020,3695–3699. 

[23] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and 
S. Khudanpur, Recurrent Neural Network Based 
Language Model,Proc. Conference of the International 
Speech Communication Association, Makuhari, 
JAPAN, 2010,1045–1048. 

[24] S. Dwijayanti, K. Yamamori, and M. Miyoshi, 
Enhancement of Speech Dynamics for Voice Activity 
Detection using DNN, EURASIP Journal on Audio, 
Speech and Music Processing, 2018:10, 2018,1-15. 

[25] K.H. Cho, B. Van Merriënboer, C. Gulcehre, D. 
Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, 
Learning Phrase Representations using RNN 
Encoder-decoder for Statistical Machine Translation, 
arXiv preprint, arXiv:1406.1078, 2014. 

[26] S. Hochreiter, and J. Schmidhuber, Long Short-Term 
Memory, Neural computation, 9(8), 1997,1735-1780. 

[27] F.A. Gers, N.N. Schraudolph, and J. Schmidhuber, 
Learning Precise Timing with LSTM Recurrent 
Networks, Journal of Machine Learning Research, 3(1), 
2003,115-143. 

[28] J.Y. Chung, C. Gulcehre, K.H. Cho, and Y. Bengio, 
Empirical Evaluation of Gated Recurrent Neural 
Networks on Sequence Modeling, arXiv preprint, 
arXiv:1412.3555, 2014. 

[29] M. Schuster, and K. K Paliwal, Bidirectional 
Recurrent Neural Networks, IEEE Transactions on 
Signal Processing, 45(11), 1997,2673-2681. 

[30]  Noisex-92 Database, Rice University, Available at: 
http://spib.linse.ufsc.br/noise.html. Accessed on 22 Feb 
2017. 

[31] J.L. Ba, J.R. Kiros, and G.E. Hinton, Layer 
Normalization, arXiv preprint, arXiv:1607.06450, 
2016. 

[32] J.S. Garofolo, L.F. Lamel, W.M. Fisher,  J.G. Fiscus, 
D.S. Pallett, and N.L. Dahlgren, Darpa Timit 
Acoustic-Phonetic Continuous Speech Corpus 
CD-ROM, NIST Interagency/Internal Report, 
NISTIR-4930, NIST, Gaithersburg, 1993. 

[33]  100 Nonspeech Environmental Sounds, Available at: 
http://www.pudn.com/Download/item/id/3457634.html
,2018. 

[34] D. Kingma, and J. Ba, Adam: a Method for Stochastic 
Optimization, arXiv preprint, arXiv:1412.6980, 2014. 

[35]R.O. Duda, P.E. Hart, and D.G. Stork, Pattern 
Classification, 2nd edn,  Wiley-Interscience, New York, 
2001. 

 


