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-------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 
Metaheuristic algorithms are widely used for problems in many fields such as security, health, engineering. No 
metaheuristic algorithm can achieve the optimum solution for all optimization problems. For this, new metaheuristic 
methods are constantly being proposed and existing ones are being developed. Dandelion Optimizer, one of the most 
recent metaheuristic algorithms, is biology-based. Inspired by the wind-dependent long-distance flight of the 
ripening seed of the dandelion plant. It consists of three phases: ascending phase, descending phase and landing 
phase. In this study, the chaos-based version of Chaotically Initialized Dandelion Optimizer is proposed for the first 
time in order to prevent Dandelion Optimizer from getting stuck in local solutions and to increase its success in 
global search. In this way, it is aimed to increase global convergence and to prevent sticking to a local solution. While 
creating the initial population of the algorithm, six different Chaotically Initialized Dandelion Optimizer algorithms 
were presented using the Circle, Singer, Chebyshev, Gauss/Mouse, Iterative and Logistic chaotic maps. Two 
unimodal (Sphere and Schwefel 2.22), two multimodal (Schwefel and Rastrigin) and two fixed-dimension multimodal 
(Foxholes and Kowalik) quality test functions were used to compare the performances of the algorithms. When the 
experimental results were analyzed, it was seen that the Chaotically Initialized Dandelion Optimizer algorithms gave 
successful results compared to the classical Dandelion Optimizer. 
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I. INTRODUCTION 

The aim of optimization is to search for the best between 
all solution candidates for the interested problem under 
specific constraints. Although the solution methodologies in 
classical optimization algorithms mostly depend on the 
variable types (real, integer, etc.), objective and constraint 
functions (non-linear, linear, etc.) used in the problem 
modeling, their effectiveness also depend on the solution 
method. Also, classical optimization algorithms do not 
provide applicable general solution strategies for problem 
formulations that consist of different types of decision 
variables, constraint functions, and objectives functions. 
Therefore, metaheuristic optimization algorithms are 
suggested. These techniques have gained considerable 
popularity due to their high computational efficiency and 
simplicity in their transformation. General purposed 
metaheuristic algorithms can be categorized into eight 
groups: swarm-based, biology-based, physics-based, 
chemistry-based, social-based, music-based, mathematics-
based, and sports-based [1][2]. Hybridization of these 
algorithms can also be categorized as a different group [3]. 
A perennial herb belonging to the Asteraceae family, the 
dandelion is officially known as Herbataraxaci. These plants 
have heads that can grow to be more than 20 cm tall, and 
they resemble inflorescences [4]. The wind transfers their 
mature seeds to new locations where they will nourish life. 
The crown hairs, which are crucial for the dissemination of 
the seeds, delay their landing so that the wind can carry 

them farther. The most emblematic plant that depends on the 
wind for seed dispersion is the dandelion. Under the correct 
circumstances, its seed can travel tens of kilometers in the 
wind [5]. The two main parameters that influence the 
dispersal of dandelion seeds are wind velocity and climate. 
When determining whether a seed is traveling over long or 
short distances, wind speed is used [6]. Weather affects the 
ability of dandelions to grow near or far by controlling 
whether dandelion seeds can fly.  
Dandelion seeds go through three stages. In the first stage, 
the ascent stage, a vortex forms on the dandelion seed and 
rises under the influence of drag in sunny and windy 
weather. In contrast, there is no vortex on the seeds when it 
is raining. In this situation, only local searches are possible. 
In the second stage, the descending stage, the seeds fall 
continuously after reaching a certain height. Dandelions 
eventually reproduce through seed, which at this stage lands 
randomly under the influence of wind and weather. 
Dandelion improves its populations by passing its seeds 
through these three stages to the next generation. Dandelion 
Optimization, one of the most recent metaheuristic 
algorithms, has been developed inspired by these three 
stages [7]. 
In this study, chaotic version of Dandelion Optimizer is 
proposed for the first time in order to increase its 
performance. CIDO algorithms were developed using the 
initial population chaotic maps. Circle, Singer, Chebyshev, 
Gauss/Mouse, Iterative and Logistic maps were used as 
chaotic maps. In the second part, classical DO is introduced 
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and its pseudo code is given. In the third section, the 
proposed CIDO is explained. Information is given about the 
chaotic maps used. In the fourth chapter, performance 
comparisons were made using 4 unimodal, 4 multimodal 
and 4 fixed dimension multimodel test functions. In the fifth 
chapter, the conclusion part, the study was concluded. 

II. DANDELION OPTIMIZER (DO) 

Similar to other nature-inspired meta-heuristic algorithms, 
in the DO algorithm, each dandelion seed is assumed to 
represent a candidate solution and the initial population is 
expressed as in Equation 1. 

݊݋݅ݐ݈ܽݑ݌݋݌ = ቎
ଵଵݔ ⋯ ଵ஽௜௠ݔ
⋮ ⋱ ⋮

௣௢௣ଵݔ ⋯ ௣௢௣஽௜௠ݔ
቏                             (1) 

Here, ݌݋݌ represents the population number and ݉݅ܦ 
represents the size of the variable. Equation 2 illustrates the 
formulation of the ith candidate solution, ݔ௜, which is 
produced randomly between the given problem's upper 
bound (ܷܤ) and lower bound (ܤܮ). 
௜ݔ = ݀݊ܽݎ × ܤܷ) − (ܤܮ +                                               ܤܮ

(2) 
i is an integer between 1 and ݌݋݌ and ݀݊ܽݎ is a random 
number between 0 and 1.  
At the time of initiation, the individual with the best fitness 
becomes the first elite individual to be considered the most 
feasible location for the seed of dandelion to develop. 
Equation 3 displays the mathematical equation of the first 
selection using the minimum value as an example. Here find 
specifies two directories with equal values [7]. 

௕݂௘௦௧ = min൫݂(ܺ௜)൯
௘௟௜௧௘ݔ = )݂݀݊݅)ݔ ௕݂௘௦௧ == ݂( ௜ܺ)))

                                        

(3) 

II. I. ASCENT STAGE 
Dandelion seeds must ascend to a particular height during 
the ascension phase before they may separate from their 
parents. It rises to different heights due to factors such as 
wind speed and air humidity. At this stage, the air is divided 
into two states. 
State 1: On a clear day, it is reasonable to suppose that wind 
speeds follow the lognormal distribution ݈ܻ݊~ܰ(ߪ,ߤଶ). 
The probability that dandelion seeds will wind up in remote 
places rises under this distribution because the random 
numbers are more spread along ܻ- axis. Therefore, DO 
performs the discovery process in this case. Dandelion seeds 
are randomly dispersed around search space by the wind. A 
dandelion seed's rate of germination is influenced by the 
speed of the wind. The farther the seeds are dispersed and 
the higher the dandelions fly, the stronger the wind. The 
wind speed constantly modifies the vortices on dandelion 
seeds to cause them to rise spirally [7]. Equation 4 contains 
the mathematical expression that describes this 
circumstance. 
௧ାଵݔ = ௧ݔ + ߙ × ௫ݒ × ௬ݒ × ௦ݔ)ܻ݈݊ −                                 (௧ݔ

(4) 
The dandelion seed's location in this iteration is shown by 
the value of ݔ௧. In the t iterations of the search space, ݔ௦ 
denotes the spot that was arbitrarily selected. Equation 5 
refers to randomly generated positions [7].  

௦ݔ = (݉݅ܦ,1)݀݊ܽݎ × ܤܷ) − (ܤܮ +  (5)              ܤܮ
 
݈ܻ݊ represents the lognormal distribution subject to ߤ = 0 
and ߪଶ = 1 and it is mathematically defined as shown in 
Equation 6. The mathematical formula for ݈ܻ݊, which stands 
for a lognormal distribution subject to ߤ = 0 and ߪଶ = 1, is 
given in Equation 6. 

݈ܻ݊ = ൝
ଵ

௬√ଶగ
exp ቂ− ଵ

ଶఙమ
ଶቃ(ݕ݈݊) ݕ        ≥ 0

0 ݕ       < 0
         (6) 

 
In this case, ݕ stands for typical normal distribution ܰ(0,1). 
 is an adjustable parameter that determines the size of the ߙ
search step, and Equation 7 provides its mathematical 
expression. 
ߙ = ()݀݊ܽݎ × ( ଵ

்మ
ଶݐ − ଶ

்
ݐ + 1)                        (7) 

 
The lift component coefficients of a dandelion caused by the 
separated vortex motion are represented by the variables ݒ௫ 
and ݒ௬ in Equation 4. Equation 8 is used to calculate the 
force on variable dimensions. ߠ is a number in the range 
  .[7]  [ߨ,ߨ−]

ݎ = ଵ
ఌഇ

௫ݒ = ݎ × ߠݏ݋ܿ
௬ݒ = ݎ × ߠ݊݅ݏ

                                                                    (8) 

 
State 2: Dandelion seeds struggle to rise effectively with the 
wind on wet days due to humidity, air resistance, and other 
variables. In this instance, the seeds of dandelion gain from 
their surrounding community. The mathematical definition 
corresponding to this situation is given in Equation 9.  
௧ାଵݔ = ௧ݔ × ݇                                                                       
(9) 
݇ is used to organize a dandelion's local search area. 
Equation 10 shows the calculation of domains.  
ݍ = ଵ

்మିଶ்ାଵ
ଶݐ − ଶ

்మିଶ்ାଵ
ݐ + 1 + ଵ

்మିଶ்ାଵ
݇ = 1 − ()݀݊ܽݎ ×                                        ݍ

             (10) 

To ensure the convergence of the population to the ideal 
individual at the end of the iterations, the parameter ݇ 
gradually approaches 1 [7]. Equation 11 illustrates the 
mathematical formulation of dandelion seeds in the rising 
stage. 
௧ାଵݔ =

൜
௧ݔ + ߙ × ௫ݒ × ௬ݒ × ௦ݔ)ܻ݈݊ − (௧ݔ ݊݀݊ܽݎ      < 1.5
௧ݔ ×  (11)        ݁ݏ݈݁                                                ݇

 is a random number following the standard normal ݊݀݊ܽݎ
distribution. 

II.II. DESCENDING STAGE 
The DO algorithm prioritizes exploration at this point. 
Dandelion seeds typically fall to the ground after ascending 
a given amount. Brownian motion is utilized in DO to 
replicate the trajectory of moving dandelions. In the iterative 
updating process, it is simple for individuals to traverse 
more search populations since the Brownian motion goes by 
a normal distribution at all changes. The average position 
data following the rising stage is utilized to reflect the 
stability of the dandelion landing. This makes it easier for 
the population as a whole to grow into vibrant communities. 
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Equation 12 provides the mathematical expression for this 
stage. 
௧ାଵݔ = ௧ݔ ߙ− × ௧ߚ × ௠௘௔௡_௧ݔ) − ߙ × ௧ߚ ×  ௧)           (12)ݔ
This equation, which uses a random number drawn from the 
norm distribution, describes the Brownian motion. The 
mathematical expression of ݔ௠௘௔௡_௧ , which denotes the 
population's average location in the ith iteration, is given in 
Equation 13 [7]. 
௠௘௔௡_௧ݔ = ଵ

௣௢௣
∑ ௜ݔ
௣௢௣
௜ୀଵ                               (13) 

II.III. LANDING STAGE  
The DO algorithm concentrates on the exploitation steps in 
this section. The dandelion seed decides where to land at 
random in the first two stages. It is intended that the method 
converges to the overall optimal solution as the iterations 
advance gradually. The approximate position where the 
dandelion seeds will thrive the easiest is the best option that 
can be reached in this manner. The expertise of current elites 
is used by search agents in their local communities in order 
to closely approximate the global optimum. The population's 
evolution will eventually lead to the discovery of the global 
optimal solution. This behavior is expressed by Equation 
(14). 
௧ାଵݔ = ௘௟௜௧௘ݔ + (ߣ)ݕݒ݈݁ × ߙ × ௘௟௜௧௘ݔ) − ௧ݔ ×  (14)          (ߜ
 ௘௟௜௧௘ represents the optimal dandelion seed position in theݔ
ith iteration. The ݈݁(ߣ)ݕݒ calculated using Equation 15 
represents the Levy flight [7]. 
(ߣ)ݕݒ݈݁ = ݏ × ఠ×ఙ

|௧|
భ
ഁ

                                                         (15) 

Here, ߚ is a random number between [0,2], in this study, the 
value of ߚ is taken as 1.5. ݏ is a constant and its value is 
0.01. ߱ and ݐ are random numbers between [0,1]. The 
mathematical formula of ߪ is shown in Equation 16.  

ߪ = (
୻(ଵାఉ)×ୱ୧୬ (ഏഁమ )

୻(భశഁమ )×ఉ×ଶ(ഁషభమ )
)                    (16) 

The value of the constant ߚ is used as 1.5. ߜ is a linearly 
increasing value between [0,2] and is computed as shown in 
Equation 17.  
ߜ = ଶ௧

்
                                        (17) 

II.IV. RUNNING THE DO ALGORITHM 
In DO, the optimization process is initiated by the creation 
of random vector groups in the search space. Dandelion 
seeds then carry out three phases of iterative optimization: 
ascending, descending, and landing. Each seed of dandelion 
was placed in ascending order from top to bottom based on 
its fitness, using the smallest value as an example. The elite 
member of the population's next generation is the individual 
with the lowest fitness, and the ranking population serves as 
the beginning population for following iteration. This 
sorting technique is helpful for passing down reliable 
information. The algorithm sets the maximum number of 
iterations before completing the optimization process [7]. 
Figure 1 depicts the flowchart diagram for the suggested DO 
algorithm. 

Start

Generate 
dandelion seeds

Calculate 
fitness value

Choose xelite

if t<T

State 1 State 2

Ascent Stage
randn()<1.5

Descending 
Stage

Landing 
Stage

Update xelite 
and xbest

Return xbest, 
fbest

Y

Y N

N

End
 

 
Fig 1. Pseudocode of the DO algorithm 

III. CHAOTICALLY INITIALIZED 
DANDELION OPTIMIZER (CIDO) 

Generating long-term random sequences with good 
uniformity is essential in numerical analysis, sampling, 
decision making, and especially metaheuristic optimization. 
Successful generation of random numbers reduces 
computation and storage time to obtain the preferred 
accuracy. Such created sequences may be "random" enough 
for specific application, but not random enough for other 
applications [8][9]. Recently, random number sequences 
have been replaced by chaotic number sequences and give 
better results in many complex real-world problems. Chaotic 
number sequences have increased in popularity due to their 
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theoretical spread spectrum properties, unpredictability, and 
their associated ergodic properties [10]. 
The initial population is created using random sequences in 
the classic dandelion optimizer. The dandelion optimizer’s 
randomized parameters may have an impact on how 
effective the algorithm is. The convergence rate might be 
lower since it might not be able to cover a worldwide 
search. The aim of this study is to reveal the effect of the 
chaotic sequence with different chaotic maps on the success 
of dandelion optimizer for the interested problems. The 
initiation step of the dandelion optimizer can affect the 
success of convergence. Thus, in the initialization step of 
dandelion optimizer, different chaotic systems are used 
instead of random number sequences. Therefore, a 
chaotically initiated dandelion optimizer, called CIDO, is 
proposed in this study. In this way, the global convergence 
of dandelion optimizer was tried to be improved and kept 
away from being trapped in local solutions. Instead of the 
equation in Equation 5 used to create the initial population 
in the dandelion optimizer algorithm, chaotic maps are used. 
The first rand value is considered as ܴ଴  and after this rand 
value for the determination of initial values of dimensions of 
search agents Equation 18 is used. 
ܴ௧ାଵ =  ௧௬௣௘(ܴ௧)                      (18)݌ܽܯܿ݅ݐ݋ℎܽܥ
generates chaotic numbers according to the first initial 
random number (ܴ଴) for the first iteration. type shows the 
type of the used chaotic map. Thus, ܴ௧ାଵgenerates chaotic 
numbers according to the initial values of the selected 
chaotic map for the initial search agents. The pseudo-code 
of the proposed method is presented in Figure 2. 

 

The chaotic maps and equations used in the study are given 
in Table 1. 

Table 1. Chaotic maps and equations used in the study 
Chaotic Map Formula 
Circle map  ܺ௡ାଵ

= ܺ௡ + ܾ − ቀ
ܽ

ቁߨ2 sin(2ܺߨ௡)݉݀݋ 
Singer map ܺ௡ାଵ = ݑ × (7.86 × ܺ௡

− 23.31 × (ܺ௡ଶ)
+ 28.75 × (ܺ௡ଷ)
− 13.302875 × ܺ௡ସ) 

Chebyshev 
map 

ܺ௡ାଵ = cos(݊ ×  ((௡ܺ)ݏ݋ܿܿݎܽ

Gauss/mouse 
map 

ܺ௡ାଵ = exp(−ܺߙ௡ଶ) +  ଵߚ

Iterative map ܺ௡ାଵ = sin ൬
ߨܽ
ܺ௡
൰ ,ܽ = 0.7 

Logistic map ܺ௡ାଵ = −௡(1ݔݎ ܺ௡) 

Figure 3 shows the chaotic numbers generated from the 
chaotic maps used in the study. 

 
Fig3. Chaotic numbers generated from the chaotic maps 

used 

IV. EXPERIMENTAL RESULTS 

To measure the performance of the proposed CIDO 
algorithm, four unimodal (Sphere, Rosenbrock, Schwefel 
2.22, and Step), four multimodal (Schwefel, Ackley, 
Rastrigin, and Griewank) and four fixed-dimension 
multimodal (Foxholes, Kowalik Six-hump camel back and 
Branin), a total of twelve benchmark test functions were 
used. It is typical to use specific standard benchmark 
functions even in the most recent examples of these tests 
with the implicit (but unproven) assumption that the 
difficulty of these benchmark functions generally equates to 
that of real-world applications. Even some of these 
benchmark functions are marketed as being exceptionally 
difficult.These benchmark test functions and their 
explanations used are presented in Table 2. 

 
Fig 2. The pseudo-code of the CIDO algorithm 
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Table 2. Benchmark test functions 

 Function Definition Range Min Problem 
Dimension 

U
ni

m
od

al
 

Sphere ଵ݂(ݔ) = ෍ݔ௜ଶ
௡

௜ୀଵ

 -100 ≤ xi  ≤ 100 0 30 

Schwefel 2.22 ଶ݂(ݔ) = ෍ |௜ݔ|
ே

௜ୀ଴

+ෑ |௜ݔ|
ே

௜ୀ଴

 -10 ≤ xi  ≤ 10 0 30 

Rosenbrock ଷ݂(ݔ) = ෍ ௜ାଵݔ)100) − ଶ)ଶݔ
௡ିଵ

௜ୀଵ
+ ௜ݔ) − 1)ଶ) -30 ≤ xi  ≤ 30 0 30 

Step ସ݂(ݔ) = ෍ ௜ݔ|) + 0.5|)ଶ
௡

௜ୀଵ
 -100 ≤ xi  ≤ 100 0 30 

M
ul

tim
od

al
 

Schwefel ହ݂(ݔ) = ݊ × 418.9829 +෍−ݔ௜ sin൫ඥݔ௜൯
௡

௜ୀଵ

 -500 ≤ xi  ≤ 500 −418.9829
× n 30 

Rastrigin ଺݂(ݔ) = ෍ൣݔ௜ଶ − 10 cos(2ݔߨ௜൯ + 10]
ே

௜ୀଵ

 -5.12 ≤ xi  ≤ 5.12 0 30 

Ackley  
଻݂(ݔ) = ቌ−0.2ඨ݌ݔ20݁−

1
2෍ ௜ଶݔ

௡

௜ୀଵ
ቍ

− exp൬
1
݊෍ ݅ݔߨ2ݏ݋ܿ

௡

௜ୀଵ
൰+ 20

+ ݁ 

-32 ≤ xi  ≤ 32 0 30 

Griewank ଼݂ (ݔ) =
1

4000෍ ௜ଶݔ
௡

௜ୀଵ
−ෑ ݏ݋ܿ ൬

௜ݔ
√݅
൰+ 1

௡

௜ୀଵ
 -600 ≤ xi  ≤ 600 0 30 

Fi
xe

d-
di

m
en

sio
n 

m
ul

tim
od

al
 Foxholes ଽ݂(ݔ) = ቌ

1
500

+෍
1

݆ +∑ ௜ݔ) − ܽ௜,௝)଺ଶ
௜ୀଵ

ଶହ

௝ୀଵ

ቍ

ିଵ

 
-65.536 ≤ xi  ≤ 
65.536 1 2 

Kowalik ଵ݂଴(ݔ) = ෍ቈܽ௜ −
)ଵݔ ௜ܾ

ଶ + ܾ௜ݔଶ)
ܾ௜ଶ + ܾ௜ݔଷ + ସݔ

቉
ଶଵଵ

௜ୀଵ

 -5 ≤ xi  ≤ 5 0.00030 4 

Six-hump camel back ଵ݂ଵ(ݔ) = ଵଶݔ4 − ଵସݔ2.1 +
1
3 ଵݔ

଺ + ଶݔଵݔ − ଶଶݔ4 +  ଶସ -5 ≤ xi  ≤ 5 -1.03163 2ݔ4

Branin 
ଵ݂ଶ(ݔ) = ൬ݔଶ −

5.1
ଶߨ4

ଵଶݔ +
5
ߨ
ଵݔ − 6൰

ଶ

+ 10൬1 −
1

ߨ8
൰ܿݔݏ݋ଵ + 10 

[−5.10] × 0.15 0.398 2 

In this study, the population number was taken as 30 for all 
quality test functions. The ending condition of the algorithm 
was determined as the number of iterations reaching 500. 
For each benchmark test function and chaotic map, the 

algorithm is run 20 times and the best, worst, average, and 
standard deviation of the results are given. The results 
obtained for the Sphere, Schwefel 2.22, Rosenbrock and 
Step unimodal benchmark test functions are shown in Table 
3. 

 
Table 3. Results obtained for Unimodal benchmark test functions 

  Classical 
DO 

Circle 
CIDO Singer CIDO Chebyshev 

CIDO 
Gauss 
CIDO 

Iterative 
CIDO 

Logistic 
CIDO 

Sp
he

re
 

 

Best 2.005E-06 1.124E-06 1.804E-06 1.811E-06 1.446E-06 1.736E-06 3.066E-06 
Average 1.253E-05 1.001E-05 1.135E-05 8.810E-06 1.017E-05 1.019E-05 1.037E-05 
Worst 5.473E-05 2.902E-05 4.523E-05 3.007E-05 2.256E-05 3.073E-05 2.007E-05 
Standard 
Deviation 1.142E-05 8.179E-06 1.161E-05 6.736E-06 5.772E-06 7.151E-06 5.431E-06 

 

Sc
hw

ef
e

l 2
.2

2 Best 8.463E-04 8.381E-04 6.729E-04 5.818E-04 4.299E-04 6.542E-04 6.373E-04 
Average 1.716E-03 1.711E-03 1.614E-03 1.599E-03 1.471E-03 1.625E-03 1.350E-03 
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Worst 2.926E-03 3.151E-03 2.831E-03 3.144E-03 2.613E-03 3.318E-03 2.068E-03 
Standard 
Deviation 6.377E-04 6.028E-04 6.320E-04 5.770E-04 6.463E-04 7.883E-04 3.690E-04 

 
R

os
en

br
oc

k 
 

Best 2.537E+01 2.501E+01 2.538E+01 2.561E+01 2.420E+01 2.516E+01 2.290E+01 
Average 3.782E+01 3.492E+01 2.690E+01 3.472E+01 3.188E+01 2.725E+01 3.078E+01 
Worst 1.784E+02 1.204E+02 2.921E+01 1.211E+02 1.230E+02 2.935E+01 9.779E+01 
Standard 
Deviation 3.596E+01 2.480E+01 7.457E-01 2.398E+01 2.148E+01 7.477E-01 1.584E+01 

 

St
ep

 
 

Best 6.834E-06 5.249E-06 6.925E-06 5.048E-06 7.565E-06 5.272E-06 6.344E-06 
Average 1.858E-05 1.593E-05 1.733E-05 1.622E-05 1.676E-05 1.742E-05 1.833E-05 
Worst 3.197E-05 2.824E-05 2.966E-05 2.652E-05 2.752E-05 3.849E-05 3.114E-05 
Standard 
Deviation 8.373E-06 5.381E-06 7.290E-06 5.130E-06 6.385E-06 8.150E-06 7.320E-06 

 
When Table 3 is examined, the best results are obtained 
when the initial population for the Sphere test function is 
created using the Circle chaotic map. Looking at the 
average, the CIDO algorithm, which was created using the 
initial population Chebyshev chaotic map, gave the best 
result. While the worst result is obtained from the classical 
DO, it is seen that the best value is obtained from the 
Logistic map in terms of standard deviation. Looking at 
Schwefel 2.22, it is seen that the best result is obtained from 
the CIDO algorithm, whose initial function is created using 
the Gaussian chaotic map. The average best result and the 
best standard deviation were taken from Logistic CIDO. In 

the Rosenbrock test function, it is seen that the best result is 
obtained from the Logistic map. When the average and 
standard deviation are examined, it is seen that the best 
result is given by Singer map, and the worst result in the 
study is obtained from classical DO. When the results for 
the step test function are examined, it is observed that the 
best results and standard deviations are obtained from 
Chebyshev CIDO, and the best results are obtained from 
Circle CIDO in the average.A graphical representation of 
the results obtained from the unimodal benchmark test 
functions is given in Figure 4. 

  

  

 
Fig 4.Graphical representation of results from unimodal benchmark test functions 

The results obtained when Schwefel, Rastrigin, Ackley, and 
Griewank are run for the multimodal quality test functions 
are given in Table 4. Accordingly, the best result for the 
Schwefel function and the best result on average were 

obtained from the Singer chaotic map. In the standard 
deviation, the best result was obtained from the CIDO, 
whose initial population was created using the Chebyshev 
chaotic map. Looking at the results for the Rastrigin 
function, while the Logistic map gave the best result, 
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Chebyshev gave the best average result and the best 
standard deviation value. When the results obtained for the 
Ackley test function are examined, the Logistic map gives 
the best result, while the Circle map gives the best average 
result and standard deviation. Finally, for the Griewank test 
function, Circle CIDO gave the best result, Logistic CIDO 

gave the best average result, and Singer CIDO gave the best 
standard deviation value. The worst result was given by the 
classical DO algorithm.A graphical representation of the 
results obtained from the multimodal benchmark test 
functions is given in Figure 5. 

Table 4. Results obtained for Multimodal benchmark test functions 
  Classical 

DO 
Circle 
CIDO 

Singer 
CIDO 

Chebyshev 
CIDO 

Gauss 
CIDO 

Iterative 
CIDO 

Logistic 
CIDO 

Sc
hw

ef
el

 

Best -7.961E+03 -8.827E+03 -9.623E+03 -8.194E+03 -8.078E+03 -9.008E+03 -8.909E+03 
Average -7.448E+03 -7.536E+03 -8.900E+03 -7.838E+03 -7.488E+03 -7.884E+03 -8.217E+03 
Worst -6.351E+03 -6.302E+03 -8.233E+03 -7.393E+03 -6.782E+03 -6.558E+03 -6.984E+03 
Standard 
Deviation 4.160E+02 6.948E+02 4.167E+02 2.367E+02 4.502E+02 6.088E+02 5.109E+02 

 

R
as

tr
ig

in
 Best 9.063E+00 1.994E+00 7.021E+00 3.001E+00 1.010E+00 2.997E+00 9.965E-01 

Average 2.678E+01 1.704E+01 2.360E+01 1.689E+01 1.923E+01 2.643E+01 2.704E+01 
Worst 8.613E+01 6.446E+01 5.425E+01 3.421E+01 4.296E+01 7.706E+01 6.500E+01 
Standard 
Deviation 2.000E+01 1.446E+01 1.476E+01 1.037E+01 1.220E+01 1.891E+01 2.005E+01 

 

A
ck

le
y 

Best 5.122E-04 4.370E-04 3.894E-04 1.990E+01 3.120E-04 4.365E-04 2.876E-04 
Average 8.230E-04 6.747E-04 7.862E-04 1.994E+01 7.243E-04 7.599E-04 7.587E-04 
Worst 1.103E-03 9.259E-04 1.148E-03 1.997E+01 2.134E-03 1.219E-03 1.335E-03 
Standard 
Deviation 1.589E-04 1.572E-04 2.312E-04 1.635E-02 3.764E-04 2.143E-04 2.587E-04 

 

G
ri

ew
an

k 

Best 1.761E-05 3.883E-06 1.375E-05 2.566E-05 1.250E-05 9.634E-06 1.466E-05 
Average 1.756E-02 1.192E-02 1.323E-02 1.084E-02 1.390E-02 1.249E-02 1.068E-02 
Worst 7.290E-02 4.328E-02 3.464E-02 6.391E-02 3.986E-02 6.432E-02 4.734E-02 
Standard 
Deviation 2.278E-02 1.414E-02 1.105E-02 1.543E-02 1.328E-02 1.575E-02 1.369E-02 
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The results obtained for Foxholes, Kowalik, Six‐hump and 
Branin fixed-dimension multimodal benchmark test 
functions are given in Table 5. Accordingly, all algorithms 
gave similar results for the Foxholes quality test function. 
Looking at the average, it is seen that the best results are 
obtained from the CIDO algorithms that create the initial 
population with Circle, Singer and Iterative chaotic maps. 
For the Kowalik quality test function, while the algorithms 
give close values for the best result, the best value for the 
average best result is obtained from the CIDO algorithm 

using the Singer chaotic map. When the results obtained for 
the Six-Hump Camel Back quality test function are 
examined, all the results seem to be close to each other. 
However, it is seen that the best results are obtained from 
Singer and Iterative in the mean, and the best value is taken 
from the Iterative chaotic map when the standard deviation 
is examined. For the Branin test function, it is seen that 
Singer, Gauss and Iterative CIDO give the best results. It is 
seen that the best average result and standard deviation are 
obtained from the Chebyshev CIDO algorithm. 

Table 5. Results obtained for Fixed-dimension Multimodal benchmark test functions 
  Classical 

DO 
Circle 
CIDO 

Singer 
CIDO 

Chebyshev 
CIDO 

Gauss 
CIDO 

Iterative 
CIDO 

Logistic 
CIDO 

Fo
xh

ol
es

 

Best 9.980E-01 9.980E-01 9.980E-01 9.980E-01 9.980E-01 9.980E-01 9.980E-01 
Average 1.097E+00 9.980E-01 9.980E-01 1.048E+00 1.048E+00 9.980E-01 1.048E+00 
Worst 1.992E+00 9.980E-01 9.980E-01 1.992E+00 1.992E+00 9.980E-01 1.992E+00 
Standard 
Deviation 3.060E-01 1.669E-15 1.328E-15 2.223E-01 2.223E-01 7.562E-15 2.223E-01 

 

K
ow

al
ik

 

Best 3.075E-04 3.075E-04 3.075E-04 3.075E-04 3.075E-04 3.075E-04 3.075E-04 

Average 5.715E-04 5.331E-04 4.047E-04 5.080E-04 5.464E-04 5.076E-04 5.547E-04 

Worst 1.594E-03 1.223E-03 6.137E-04 1.223E-03 1.223E-03 1.594E-03 1.223E-03 

Standard 
Deviation 

3.219E-04 2.722E-04 1.116E-04 2.635E-04 3.008E-04 2.835E-04 3.127E-04 

 

Si
x‐
hu
m
p 

Best -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 
Average -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 
Worst -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00 
Standard 
Deviation 8.165E-13 2.660E-12 8.360E-13 1.324E-12 2.313E-12 6.055E-13 1.005E-12 

 

Br
an

in
 

Best 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 
Average 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 
Worst 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 
Standard 
Deviation 3.532E-11 2.302E-11 3.564E-11 1.977E-11 5.107E-11 2.049E-11 2.376E-11 

A graphical representation of the results obtained from the 
fixed-dimension multimodal benchmark test functions is 
given in Figure 6. 

V. CONCLUSION 
The Dandelion Optimizer algorithm is one of the most 
recent metaheuristic algorithms. As with other general-
purpose metaheuristic algorithms, DO must be prevented 
from getting stuck at local points to achieve fast global 
convergence and accuracy rates. For this, in this study, 
chaotic maps were used instead of random numbers in the 
creation of the initial population, which is the first step of 
DO. Algorithms with initial populations created using 
Circle, Singer, Chebyshev, Gauss, Iterative and Logistic 
chaotic maps were run for a total of twelve quality test 
functions, four of which are unimodal (Sphere, Rosenbrock, 
Schwefel 2.22, and Step), four of which are multimodal 
(Schwefel, Ackley, Rastrigin, and Griewank) and four of 
which are fixed-dimension multimodal (Foxholes, Kowalik, 
Six-hump camel back, and Branin).   
     When the experimental results are examined, it is seen 
that the CIDO algorithms with the initial population created 
using chaotic maps get more efficient results compared to 

the classical DO. The chaotic version of the algorithm can 
be effectively used for many optimization problems in the 
future. Also, different chaotic maps can be adapted to 
increase the efficiency of the algorithm. Hybrid or multi-
purpose ones can also be developed and used in different 
problems. 
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Fig 6.Graphical representation of results from fixed-
dimension multimodal benchmark test functions 
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