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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
Cloud computing is now dominant in high-performance distributed computing, offering resource polling and on-
demand services over the web. So, the task scheduling problem in a cloud computing environment becomes a 
significant analysis space due to the dynamic demand for user services. The primary goal of scheduling tasks is to 
allocate tasks to processors to achieve the shortest possible makespan while respecting priority restrictions. In 
heterogeneous multiprocessor systems, task and schedule assignments significantly impact the system's operation. 
Therefore, the different processes within the heuristic-based scheduling task algorithm will lead to a different 
makespan on a heterogeneous computing system. Thus, a suitable algorithm for scheduling should set precedence 
efficiently for every subtask based on the resources required to reduce its makespan. This paper proposes a novel 
efficient scheduling task algorithm based on the coronavirus herd immunity optimizer algorithm to solve task 
scheduling problems in a cloud computing environment. The basic idea of this method is to use the advantages of 
meta-heuristic algorithms to get the optimal solution. We evaluate the performance of our algorithm by applying 
it to three cases. The collected findings suggest that the proposed strategy successfully achieved the best solution 
in terms of makespan, speedup, efficiency, and throughput compared to others. Furthermore, the results 
demonstrate that the suggested technique beats existing methods new genetic algorithm (NGA), proposed particle 
swarm optimization (PPSO), whale optimization algorithm (WOA), enhanced genetic algorithm for task 
scheduling (EGA-TS), gravitational search algorithm (GSA), genetic algorithm (GA), and hybrid heuristic and 
genetic (HHG) by 22.8%, 12.3%, 8.8%, 7.3%, 7.3%, 3.4%, and 3.4% respectively according to makespan. 
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1. INTRODUCTION 

As Internet access and extensive data become more 
freely available, cloud computing is becoming more 
prevalent in today's business environment. Compared to 
prior systems of distributed computing, for example, grid 
and cluster computing, cloud computing has created a 
more elastic and scalable method of delivering services to 
users. Consumers are not required to own the underlying 
technology and can use platforms and resources for 
computing on a pay-per-use basis. The basic idea behind 
cloud computing is to delegate computing work to a 
resource pool of many virtual machines or heterogeneous 
virtualized servers. Because cloud computing is a market-
oriented utility, enhanced scheduling resources, which 
may support workflows, tasks, user applications, software, 

etc., are constantly required to maximize the users' and 
cloud providers' profits. Indeed, scheduling may directly 
impact a system's performance, such as operating cost, 
efficiency, and resource utilization, and it is seen as 
critical in cloud computing. Because virtual machines 
(VMs) may be given, assigned, and managed dynamically, 
cloud computing scheduling difficulties can be divided 
into two groups. The first is a virtual machine and 
mapping host that creates or migrates a virtual machine to 
a suitable host. The second is scheduling user-submitted 
tasks and mapping them to a set of available virtual 
machine resources [1]. 
To solve the scheduling task problem in a cloud 
computing environment, we have presented in this paper a 
new efficient approach based on the coronavirus herd 
immunity optimizer algorithm called the efficient 



Int. J. Advanced Networking and Applications   
Volume: 14 Issue: 06    Pages: 5686 - 5695 (2023) ISSN: 0975-0290 
 

 

5687 

coronavirus herd immunity optimizer algorithm 
(ECHIOA) to minimize the makespan of the user requests 
on the resources and maximize the speedup, efficiency, 
and throughput. In the coronavirus herd immunity 
optimizer algorithm, the representation of a vector is a 
continuous value, so we use five methods to convert the 
continuous value to a discrete value. We assess our 
algorithm's performance by running it through three cases. 
The results show that the proposed method found the best 
solutions faster and more efficiently than other algorithms 
regarding makespan, speedup, efficiency, and throughput. 
The paper is organized as follows: The notations are 
presented in section 2. The related work is provided in 
Section 3. A description of the problem is given in Section 
4. The coronavirus herd immunity optimizer algorithm is 
given in Section 5. Section 6 describes the 
ECHIOA approach. The results were obtained by applying 
ECHIOA and compared with the other results in Section 7. 
Finally, section 8 concludes and offers future work. 
 
2. NOTATIONS 

 
3. RELATED WORK 
In recent years, there has been a lot of interest in cloud 
computing technologies, both in academics and business. 
The potential of cloud computing to supply worldwide 
information technology services such as platforms, core 
infrastructure, and applications to cloud consumers over 
the Internet has fueled its appeal. It also offers on-demand 
services and different price packages. On the other hand, 
cloud task scheduling is still nondeterministic polynomial 
(NP)-complete, and it has become more sophisticated 
owing to resource elasticity and on-demand customer 
application demand. To remedy this need, this work [2] 
proposes a modified harris hawks optimization (HHO) 
technique based on simulated annealing (SA) for cloud 
task scheduling. The SA is a local search method in the 
proposed harris hawks optimization simulated annealing 
(HHOSA) strategy to increase the pace of convergence 

and solution quality provided by the traditional HHO 
algorithm. 
The demand for vast processing power and storage space 
has been increasing in many industries, and a novel cloud 
computing technology has been launched to meet this 
demand. Cloud computing technology has grown in 
popularity due to its capacity to provide these services 
efficiently and cost-effectively. With virtualization, 
information technology services have begun to transition 
to cloud computing, and virtualization has cleared the path 
for infinite resource availability. Because cloud computing 
is still in its early stages, additional research is required to 
realize its potential fully. More research is needed to 
determine how resources and tasks are assigned in a cloud 
setting, and it accounts for the quality of service (QoS) 
provided by cloud service providers. This study suggests 
utilizing the CloudSim toolkit to simulate the performance 
cost grey wolf optimization (PCGWO) method to optimize 
allocating resources and jobs in the cloud computing 
environment. The primary goal is to reduce cost and 
processing time in line with the target function [3]. 
Cloud computing is a technology that uses the Internet in 
which all programs and information are housed in a cloud 
made up of thousands of intricately connected machines. 
The main difficulty for cloud data centers is demonstrating 
how millions of requests from end users are examined and 
processed accurately and effectively. One of the most 
critical concerns in a distributed computing system is the 
load-balancing mechanism. Load-balancing solutions are 
required to boost the scalability and flexibility of cloud 
data centers. Because large-scale resources are available 
and a massive number of user requests are in the cloud 
computing load-balancing challenge, it is possible that 
many researchers evaluated and tackled it as an NP-hard 
problem. As a result, earlier researchers offered several 
heuristics algorithms, such as the imperialist competitive 
algorithm (ICA) and the firefly algorithm (FA), to 
overcome the abovementioned difficulty. However, ICA 
and FA could achieve an approximately satisfactory result 
in handling the cloud computing load-balancing problem; 
attaining a better result requires improvements in 
makespan, load balancing, central processing unit (CPU) 
time, stability, and planning speed. This study aims to 
provide a clever metaheuristic method based on ICA and 
FA to achieve the desired outcome. In addition, FA's local 
search capability can help to improve the ICA algorithm 
[4]. 
Cloud computing technology provides customers with 
pay-per-use computer resources without interfering with 
the underlying infrastructure. It is regarded as a vital 
repository of materials made available to consumers. 
Recently, there has been a significant increase in the 
desirability of cloud computing systems that rely on on-
demand computing resources, a bill on a pay-as-you-go 
basis, and multiplex numerous users on the same physical 
infrastructure. Scheduling is a significant issue in cloud 
computing since a cloud provider must service various 
customers in a cloud environment. As a challenge to 
existing technologies, this proposal intends to establish an 
optimum job scheduling model in the cloud sector. The 

GT It represents the graph of tasks 
Tai It represents the task i 
Pri It represents the processor i 

MM It represents the processor's number 
NT It represents the  task's  number 

C(Tai, Taj) 
The communication cost between 

Tai and Taj 
Start_Time(Tai, 

Prj) 
It represents the task's start time i on 

a processor Prj 
Finish_Time(Ta

i, Prj) 
It represents the task's  finish time i 
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Ready_Time(Pri
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LT 
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suggested model handles the job scheduling problem by 
employing an upgraded meta-heuristic algorithm known as 
the fitness rate-based rider optimization algorithm (FR-
ROA), a more sophisticated version of the traditional rider 
optimization algorithm (ROA). The maximum makespan 
or completion time and the aggregate of the completion 
times of whole jobs are the constraints of objectives 
considered for optimum task scheduling because the 
suggested FR-ROA benefits from achieving convergence 
in a short time [5]. 
Cloud computing is a dynamic and diversified ecosystem 
that spans several geographies. It is made up of a plethora 
of tasks and computational resources. In the cloud, the 
scheduling of task algorithms plays a crucial role in 
determining the best virtual machine (VM) for a given job. 
The scheduling of the task algorithm is in charge of 
lowering the schedule's makespan. In recent years, nature-
inspired algorithms have been used for work scheduling, 
outperforming traditional algorithms. The crow search 
algorithm (CSA) is presented in this study [6] for job 
scheduling in the cloud. Crows' food-gathering behaviors 
inspired it. In actuality, the crow continues to scan its 
surroundings for a better food source than its present one. 
As a result, the CSA selects an appropriate VM for the job 
and reduces the makespan. 
One of the most challenging difficulties in cloud 
computing is efficient task scheduling. Because scheduling 
tasks is an NP-complete issue, finding the optimum 
solution is difficult, especially for large task sizes. Several 
jobs in the cloud computing environment may need to be 
efficiently scheduled on numerous virtual machines while 
reducing makespan and concurrently optimizing resource 
consumption. We introduce a unique hybrid antlion 
optimization method with elite-based differential evolution 
to handle multi-objective work scheduling issues in cloud 
computing settings. The multi-objective aspect of the 
problem in the proposed solution, which we term multi-
objective antlion optimizer (MALO), stems from the 
necessity to decrease makespan while optimizing resource 
consumption concurrently. The antlion optimization 
algorithm was modified using a regional search strategy to 
boost its exploitation capabilities and prevent it from 
becoming stuck in local optima. Elite-based differential 
evolution is used [7]. 
Cloud computing is the rebel of worldwide networked 
resources and effortlessly shares data with users. With the 
extensive availability of network technology, user 
demands are increasing daily. The most significant issue in 
cloud technology now is task scheduling. Cargo position 
and task arrangement are critical criteria in the cloud 
domain that might guarantee QoS. In this study, the 
authors developed the optimal energy consumption 
reduction and makespan scheduling tasks using the local 
pollination-based gray wolf optimizer (LPGWO) 
algorithm. The gray wolf optimizer (GWO) and flower 
pollination algorithm (FPA) are merged and employed in 
the hybrid idea. In the presence of GWO, the optimal 
searching factor is employed to accelerate convergence. 
The FPA is used to distribute data to the following 

candidate packet solutions using the local pollination idea 
[8]. 
 
4. PROBLEM DESCRIPTION 
The task scheduling model during this work is defined as 
distributed tasks to be implemented on processors. The 
processors may be different in general. A graph of tasks 
(GT) may be mapped to describe the problem structure. 
GT is a directed acyclic graph (DAG) of tasks: Ta1, Ta2, 
Ta3, etc... Tan. Every node in the graph is termed a task. A 
task is assumed to be a series of instructions that must be 
carried out in a specific order by an assigned processor. A 
task (node) might have pre-demanded data (inputs) before 
implementation. The task may be activated to begin 
execution when all inputs have been received. These 
inputs are expected to be delivered after some other tasks 
are implemented, as these tasks evaluate them. We call 
this relying on task dependency. If a task depends on other 
tasks' data, we consider that task as the parent of the task, 
and the task is their child. A task with no parents is an 
entry task, while a task with no children is referred to as an 
exit task [9]. The time of execution of a task is the 
computation cost. Whenever the computation cost of a 
task Tai is represented by weight (Tai, Prj), the task graph 
also contains directed edges, representing a partial order of 
the tasks. The partial order establishes a DAG with a 
precedence constraint and indicates that if (Tai → Taj), 
then Taj is a child. The child cannot begin until its parent 
Tai has finished. The weight on edge represents the 
communication cost between the tasks and is represented 
by C(Tai, Taj). The communication cost is considered only 
if Tai and Taj are allocated to different processors; 
otherwise, it equals zero. In that case, Tai and Taj are 
assigned to the same processor. If a node Tai is assigned to 
processor Prj, the start time of the task and the finish time 
are represented by Start_Time(Tai, Prj) and 
Finish_Time(Tai, Prj), respectively. After scheduling the 
tasks, the makespan is defined as the max 
{Finish_Time(Tai, Prj)} across all processors. The 
scheduling problem is to find a schedule of the tasks in the 
processors such that the makespan is decreased over 
possible schedules where the task dependency constraints 
are preserved. Task dependency constraints state that any 
task can't start until all parents have finished. Assume that 
Prj is the processor and that the KPth parent task Takp of 
task Tai is scheduled. The data-arrival of Tai at processor 
Prj is when the per-demanded data for the task execution 
becomes available. This is defined in [9] by the following: 
Data_Arrive(Tai, Prj) = max{Finish_Time(Takp , Prj) + 
C(Tai , Takp)} where kp = 1, 2, 3,…. Parent_Number. 
 
5. ALGORITHM FOR CORONAVIRUS HERD 
IMMUNITY OPTIMIZER 
coronavirus herd immunity optimizer (CHIO) is depicted 
as a series of stages, which are extensively detailed below. 
The suggested optimization technique is based on herd 
immunity [10]. The method comprises six major phases, 
which are described below: 
Step 1: Set the settings for coronavirus herd immunity and 
the problem of optimization. The issue of optimization is 
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framed in the context of the objective function, as shown 
in this step: 
min
௬
 y ϵ [LOB, UPB]                                     (1)(ݕ)݃

CHIO includes two parameters of control and four 
algorithmic techniques. The objective function g(y) is 
derived for the case y = (y1, y2,..., yn), where yi is the 
decision variable or gene indexed by n, and i is the overall 
total of genes in every individual. It is worth noting that 
the value range of every gene yi is [LOB, UPB], with LOB 
and UPB being the lowest and upper boundaries of gene 
yi. The four algorithmic parameters are: 
W0: This shows the number of first infected instances in 
this scenario, where it begins with one. 
Maximum_Iter: This denotes the maximum number of 
iterations that may be performed. 
Pops: This represents the population size. 
n: This indicates the problem's dimensionality. 
In this phase, the CHIO's two major control parameters 
must be initialized: 
The rate of essential reproduction (BRr) governs the CHIO 
operators by propagating the viral pandemic among 
people. 
The maximum age of infected cases (Maximum_age): It 
controls the state of infected patients, with those reaching 
their maximum age either recovering or dying. 
Step 2: Create a population of herd immunity. Initially, 
CHIO produces a collection of individuals or instances as 
prominent as Pops at random or heuristically. The created 
cases are saved in the herd immunity population (HI_Pop) 
as a matrix of two dimensions and size (n * Pops), such as: 

HI_Pop =቎
ଵଵݕ ⋯ ௡ଵݕ
⋮ … . ⋮

ଵݕ
௉௢௣௦ ⋯ ௡ݕ

௉௢௣௦
቏(2) 

And every row j represents a case yj, which is produced as 
follows: 
௜ݕ
௝= LOB + (UPB-LOB) * P(0,1), where i=1, 2, . . .,n. Eq. 

1 is used to compute every case's objective function or rate 
of immunity. Furthermore, the vector of status (ST) of 
length Pops for every case in HI_Pop is begun by either 
one infected case or zero susceptible cases. It is worth 
noting that the number in (ST) is chosen randomly and can 
be as high as W0. 
Step 3: Evolution of the coronavirus herd immunity. It is 
the primary improvement loop for CHIO. The gene (y୧

୨) of 
case yj is either unchanged or modified by social distance 
according to three rules based on the fraction of the BRr, 
as follows: 

௜ݕ
௝(u+1) = 

⎩
⎪
⎨

⎪
⎧ ௜ݕ

௝(ݑ)݊ܽݎ ≥ ݎܴܤ

ܮ ቀݕ௜
௝(ݑ)ቁ݊ܽݎ < ଵ

ଷ
∗ ݎܴܤ

ܱ ቀݕ௜
௝(ݑ)ቁ ݊ܽݎ < ଶ

ଷ
∗ ݎܴܤ

ܧ ቀݕ௜
௝(ݑ)ቁ݊ܽݎ < ݎܴܤ

(3) 

Where ran generates a number between 0 and 1 at random. 
The following are the three rules to consider: 
In the infected case: the range of ran ߳ ቂ0, ଵ

ଷ
 the value ,(ݎܴܤ

of the new gene of ݕ௜
௝(ݑ + 1) is influenced by some social 

distance caused by the difference between the gene 

extracted from an infected case ym and the present gene, 
such as: 
௜ݕ
௝(ݑ + 1)= L(ݕ௜

௝(u)                                (4)  
Where  
L(ݕ௜

௝(u)) = ݕ௜
௝(u) + ran * ( ݕ௜

௝(u) - ݕ௜௖(u))                        (5) 
It should be noted that the value ݕ௜௖(u) is picked at random 
from any infected case yc based on the vector of status 
(ST) such that c = {݅|ܵ ௜ܶ = 1}. 
In susceptible case: the range of ran ߳ ቂଵ

ଷ
, ݎܴܤ ଶ

ଷ
 the ,(ݎܴܤ

value of the new gene ݕ௜
௝(u+1) is influenced by some 

social distance caused by the difference between the gene 
extracted from a susceptible case ym and the present gene, 
such as: 
௜ݕ
௝(u+1) = O(ݕ௜

௝(u))                                   (6) 
Where 
O(ݕ௜

௝(u)) = ݕ௜
௝(u) + ran * (ݕ௜

௝(u) -ݕ௜௠(u))                        (7) 
It should be noted that the value ݕ௜௠(u)is randomly 
distributed from any susceptible case ym depending on the 
vector of status (ST), such that m = {݅|ܵ ௜ܶ = 0}. 
In the immune case: the range of ran ߳ ቂଶ

ଷ
 the,(ݎܴܤ,ݎܴܤ

value of the new gene ݕ௜
௝(u+1) is influenced by some 

social distance caused by the difference between the gene 
extracted from an immune case yv and the present gene, 
such as: 
௜ݕ
௝(u+1) = E( ݕ௜

௝(u))                                (8) 
where  
E( ݕ௜

௝(u)) = ݕ௜
௝(u) + ran * (ݕ௜

௝(u)-ݕ௜௩(u))                          (9) 
It should be noted that the value ݕ௜௩(u) is distributed from 
the best immune case yv depending on the vector of status 
(ST) in such a way that: 
g(yv) = arg   min

௝~ ൛݇หܵ ௞ܶ = 2ൟ
 (10)(௝ݕ)݃

Step 4: Update the population of herd immunity. The rate 
of immunity g(ݕ௝(ݑ + 1)) of every created case ݕ ௝(ݑ +
1) is computed, and the present case ݕ௝(ݑ) is substituted 
with the created case ݕ௝(ݑ + 1), if better, such as 
g(ݕ௝(ݑ + 1)) < g(ݕ௝(ݑ)) if ܵ ௝ܶ=1, the age vector ܣ௝ 
increased by one. 
For each case ݕ௝, the status vector (ܵ ௝ܶ) is updated 
depending on the threshold of the herd immune, which is 
calculated using the following equation: 
 =࢐ࢀࡿ

ቐ
૚     g ቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ) 

(࢟)ࢍ∆
∧ ࢐ࢀࡿ = ૙ ∧ ݑ)௝ݕ)ࢇ࢔࢕࢘࢕ࢉ࢙࢏ + 1))

૛                                              g ቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ) 
(࢟)ࢍ∆

 ∧ ࢐ࢀࡿ  = ૚
       

                                                                                            ….(11) 
where iscorona(ݕ௝(ݑ + 1)is a value in binary, and it is 
equal to one when the new case ݕ௝(ݑ + 1)inherits a value 
from any infected case. The ∆g(y) is the mean value of the 

population immunity rates, which is expressed as∑ ೒(೤೔)
ು೚೛ೞ
೔సభ
ು೚೛ೞ  

. It should be noted that if the newly created individual 
rate of immunity is higher than the population's average 
rate of immunity, the immunity rate of the individuals in 
the population will be adjusted depending on the 
previously determined social distance. It suggests that our 
people are becoming more immune. We have reached the 
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herd immunity threshold if the freshly produced 
population is immune to the pandemic. 
Step 5: Cases of death If the present infected case (ܵ ௝ܶ== 
1) immunity rate g(ݕ௝(ݑ + 1)) doesn't improve after a 
given number of iterations as indicated by the parameter 
Maximum_age (i.e., Aj >= Maximum_ age). This case is 
declared dead. It is then recreated from scratch using 
௜ݕ
௝(ݑ + 1)= LOB + (UPB-LOB) * P(0,1), where i=1, 2, 

3,...,n. In addition, Aj and STj are also set to zero. It can 
benefit diversifying and avoiding local optima and the 
present population. 
Step 6: The criteria for stopping CHIO continue Steps 3–6 
until the termination measure is met, which generally 
depends on whether the maximum number of iterations is 
met. In this situation, the population is mainly determined 
by the total number of immune and susceptible cases, and 
infected cases have vanished. 
 
Algorithm CHIO  
Initialize the parameters (Pops, Maximum_age, W0, 
Maximum_iter, BRr) 
Generate the population By using ݕ௜

௝= LOB + (UPB-LOB) 
* P(0,1) 
Compute the fitness function  
Put STj=Aj =0    j= 1,2,…., Pops   
While (t<= Maximum_iter)  
      For j=1: Pops  
           iscorona(ݕ ௝(ݑ + 1))= false 
           For i=1: N  
               If (ran < 1/3 * BRr)  
                    Use Eq. 4, and Eq. 5 
                    Iscorona(ݕ௝(ݑ + 1))= true 
              Else if (ran < 2/3 * BRr)  
                    Use Eq. 6 and Eq. 7 
              Else if (ran < BRr) 
                    Use Eq. 8 and Eq. 9 
              Else  
௜ݕ
௝(ݑ + ௜ݕ = (1

௝(u)  
             End if  
        End for 
    If (gቀݕ௝(ݑ + 1)ቁ<= g ቀݕ௝(ݑ)ቁ 
ݕ =(ݑ)௝ݕ ᇱ௝(ݑ + 1) 
    Else  
         Aj= Aj+1 
    End if 
    If (g ቀݕ ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬) ∧ ܵ ௝ܶ = 0 ∧
ݑ)௝ݕ)ܽ݊݋ݎ݋ܿݏ݅ + 1)) 
         STj=Aj=1 
    End if 
    If (gቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬)  ∧  ܵ ௝ܶ = 1) 
         STj=2 
        Aj=0 
    End if 
   If ((Aj >= Maximum_age ) ∧ (STj==1)) 
௜ݕ
௝(ݑ + 1)= LOB + (UPB-LOB) * P(0,1) 

         STj=Aj=0 
  End if 

End for 
t=t+1 
End while  
 
6. THE PROPOSED ALGORITHM 
We see that the representation of a vector is a continuous 
value, so we will use the smallest position value (SPV) 
rule [11] and the largest position value (LPV) rule [12]. 
After using the SPV or LPV, we will use the modulus 
function with the number of processors and increase the 
value by one, as shown in Fig. 1 and Fig. 2. 
 

1.5 2.1 1.3 1.8 3.0 2.5 1.2 
 

7 3 1 4 2 6 5 
SPV 

2 1 2 2 3 1 3 
Modulus with SPV and number of processors=3 

 
Figure 1: An example of the proposed schedule with the 
SPV rule 
 
 

1.5 2.1 1.3 1.8 3.0 2.5 1.2 
 

5 6 2 4 1 3 7 
LPV 

 

Modulus with LPV and number of processors=3 
 
Figure 2: An example of the proposed schedule with the 
LPV rule 
 
 
Figure 3:  Proposed schedule 
 
The tasks Ta2 and Ta6 are scheduled on processor one. The 
tasks Ta4, Ta5, and Ta7 are scheduled on processor two. 
Finally, the tasks Ta1 and Ta3 are scheduled on processor 
three, as shown in Fig. 3. 
 
The proposed algorithm  
Input: DAG's computation cost and communication cost 
Output: the best solution 
Initialize the parameters (Pops, Maximum_age, W0, 
Maximum_iter, BRr, LOB, UPB) 
Generate the population By using ݕ௜

௝= LOB + (UPB-LOB) 
* P(0,1) 
Convert the population by using Algorithm 2 
Calculate the objective function by using Algorithm 1 
Calculate the fitness function  
Put STj=Aj =0    j= 1,2,…., Pops 
t=1   
While (t<= Maximum_iter)  
      For j=1: Pops  
           iscorona(ݕ௝(ݑ + 1))= false 

3 1 3 2 2 1 2 

3 1 3 2 2 1 2 
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           For i=1: N  
               If (ran < 1/3 * BRr)  
                    Use equations Eq. 4 and Eq. 5 
                    iscorona(ݕ௝(ݑ + 1))= true 
               Else if (ran < 2/3 * BRr)  
                   Use equations Eq. 6 and Eq. 7 
               Else if (ran < BRr) 
                   Use equations Eq. 8 and Eq. 9 
               Else  
௜ݕ
௝(ݑ + ௜ݕ = (1

௝(u)  
               End if  
      End for 
      Convert the obtained solution by using Algorithm 2 
      Calculate the objective function by using Algorithm 1 
      Calculate fitness function  
      If (gቀݕ௝(ݑ + 1)ቁ<= g ቀݕ௝(ݑ)ቁ 
ݕ =(ݑ)௝ݕ ᇱ௝(ݑ + 1) 
      Else  
            Aj= Aj+1 
      Endif 
      If (g ቀݕ ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬) ∧ ܵ ௝ܶ = 0 ∧
ݑ)௝ݕ)ܽ݊݋ݎ݋ܿݏ݅ + 1)) 
            STj=Aj=1 
      End if 
      If (gቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬)  ∧  ܵ ௝ܶ = 1) 
            STj=2 
            Aj=0 
       End if 
       If ((Aj >= Maximum_age ) ∧  (STj==1)) 
௜ݕ
௝(ݑ + 1)= LOB + (UPB-LOB) * P(0,1) 

            STj=Aj=0 
        End if 
    End for 
t=t+1 
End while  
 
Algorithm 1: Calculate the objective function of the task 
schedule using the Standard Genetic Algorithm (SGA) [9] 
Input the schedule of tasks as shown in Fig. 3 
Output the makespan 
Ready_Time[Prj] = 0       where     j = 1, 2, ……MM. 
For i = 1 : NT 
{ 
       Take the first task Tai to be executed from LT and 
remove it. 
       For j = 1 : MM 
            { 
           If Tai is scheduled to processor Prj 
              Start_Time(Tai, Prj) = max{Ready_Time(Prj), 
Data_Arrive (Tai, Prj)} 
              Finish_Time(Tai, Prj) = Start_Time(Tai, Prj) + 
weight(Tai, Prj) 
              Ready_Time(Prj) = Finish_Time(Tai, Prj)  
           End If 
             } 
} 
makespan = max(Finish_Time) 

 
Algorithm 2: The function that converts a continuous 
value to a discrete value  
Function Convert (s) 
R = random number between [1:5] 
If (R == 1) 
               Use the SPV rule to convert a continuous value  
Else if (R == 2) 
               Use the LPV rule to convert a continuous value 
Else if (R == 3) 
               Use the round nearest function to convert a 
continuous value 
Else if (R == 4) 
               Use the floor nearest function to convert a 
continuous value 
Else  
               Use ceil nearest function to convert a continuous 
value 
 
End if  
End Function 
 
As shown above, Algorithm 1 is used to compute the 
makespan by taking the schedule after converting it by 
Algorithm 2, which detects the method used to convert the 
continuous value to a discrete value by generating a 
random number. The proposed algorithm uses the 
operation of the Coronavirus Herd Immunity Optimization 
Algorithm to find the best solution for the makespan. We 
can see that speedup, efficiency, and throughput value 
depend on the makespan, and the more minor the 
makespan, the higher the speedup, efficiency, and 
throughput. 
 
7. EVALUATION OF ECHIOA 
We show the performance of ECHIOA by applying it to 
two cases. The first case is of 10 tasks and three 
heterogeneous processors. The second case consists of 10 
tasks and three heterogeneous processors. ECHIOA was 
implemented as a system by MATLAB 2016. We set the 
initial values of the parameters Pops = 100, Maximum_age 
= 100, W0 = 1, Maximum_iter = 100, LOB = 1, UPB = 3, 
and BRr = 0.05. 
 
Speedup is the ratio between the results obtained by 
assigning all tasks to a virtual machine that gives the 
minimum schedule length and the results obtained by 
executing tasks in parallel [13]. 
Speedup = min 

୮୰ౠ
 ( ∑

୵ୣ୧୥୦୲౟ ,ౠ 
୑ୟ୩ୣୱ୮ୟ୬୘ୟ౟  )(12) 

Efficiency is the ratio between the obtained speedup 
results and the total number of virtual machines used [13]. 
Efficiency = ୗ୮ୣୣୢ୳୮

୑୑
(13)      

Throughput: The value of the throughput metric can be 
defined as the number of tasks executed per unit of time 
[14]. 
Throughput = ୒୘.

୑ୟ୩ୣୱ୮ୟ୬
 (14) 
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7.1 Case 1 
We consider a case of 10 tasks {Ta1, Ta2, Ta3, Ta4, Ta5, 
Ta6, Ta7, Ta8, Ta9, Ta10} to be executed on three 
heterogeneous processors {Pr1, Pr2, Pr3}. The cost of 
executing every task on different processors is shown in 
[13]. Tab. 1 represents each task's start and finish times on 
different processors and the schedule obtained by 
ECHIOA and other algorithms. The results obtained by 
ECHIOA are compared with those obtained by the new 
genetic algorithm (N-GA) [15] and proposed particle 
swarm optimization (PPSO) [16]. The proposed task 
priority of ECHIOA {Ta1, Ta4, Ta3, Ta2, Ta6, Ta7, Ta5, Ta9, 
Ta8, Ta10}, task priority of N-GA {Ta1, Ta4, Ta2, Ta3, Ta7, 
Ta5, Ta6, Ta9, Ta8, Ta10}, task priority of PPSO {Ta1, Ta2, 
Ta3, Ta4, Ta5, Ta6, Ta7, Ta8, Ta9, Ta10}. Fig. 4, Fig. 5, Fig. 
6, and Fig. 7 represent the results obtained by ECHIOA, 
N-GA, and PPSO in terms of makespan, speedup, 
efficiency, and throughput. 
 
Table 1: Schedule obtained by ECHIOA and other 
algorithms for case 1 

 N-GA PPSO ECHIOA 

 Pr1 Pr2 Pr3 Pr1 Pr2 Pr
3 

Pr
1 

Pr2 Pr
3 

Ta1   0-
4 

0-
7   0-

7   

Ta2   
32
-
50 

7-
14   

30
-
37 

  

Ta3 43-
60   

14
-
31 

  
13
-
30 

  

Ta4   4-
32 

31
-
37 

  7-
13   

Ta5  61-
78   32-

49   48-
65  

Ta6   
62
-
89 

37
-
72 

    
33
-
60 

Ta7 
60-
66   

72
-
78 

  
37
-
43 

  

Ta8 
113
-
133 

  

84
-
10
4 

   79-
119  

Ta9   

97
-
11
3 

 
109
-
142 

   
74
-
90 

Ta1

0 
 

163
-
175 

  
142
-
154 

  
123
-
135 

 

 

 
Figure 4: Comparison of makespan for case 1 
 

 
Figure 5: Comparison of speedup for case 1 
 

 
Figure 6: Comparison of efficiency for case 1 
 

 
Figure 7: Comparison of throughput for case 1 
 
7.2 Case 2 
In this case, the tasks {Ta1, Ta2, Ta3, Ta4, Ta5, Ta6, Ta7, 
Ta8, Ta9, Ta10} are executed on three heterogeneous 
processors {Pr1, Pr2, Pr3}. The cost of executing every task 
on different processors is shown in [9]. Tab. 2 represents 
each task's start and finish time on different processors and 
the schedule obtained by ECHIOA and other algorithms. 
The results obtained by ECHIOA are compared with the 
whale optimization algorithm (WOA) [17], gravitational 
search algorithm (GSA) [18], enhanced genetic algorithm 
for task scheduling (EGA-TS) [19], genetic algorithm 
(GA) [20], and hybrid heuristic and genetic (HHG) [21]. 
The proposed task priority of ECHIOA { Ta1, Ta6, Ta4, 
Ta5, Ta2, Ta3, Ta8, Ta9, Ta7, Ta10}, task priority of WOA 
{Ta1, Ta3, Ta5, Ta2, Ta4, Ta6, Ta7, Ta8, Ta9, Ta10}, task 
priority of EGA-TS {Ta1, Ta3, Ta5, Ta2, Ta4, Ta6, Ta7, Ta8, 
Ta9, Ta10}, task priority of GSA {Ta1, Ta3, Ta2, Ta6, Ta4, 
Ta5, Ta7, Ta8, Ta9, Ta10}, task priority of GA {Ta1, Ta2, 
Ta4, Ta5, Ta9, Ta3, Ta7, Ta6, Ta8, Ta10}, task priority of 
HHG {Ta1, Ta2, Ta6, Ta3, Ta4, Ta5, Ta8, Ta7, Ta9, Ta10}. 
Fig. 8, Fig. 9, Fig. 10, and Fig .11 represent the results 
obtained by ECHIOA, WOA, EGA-TS, GSA, GA, and 
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HHG in terms of makespan, speedup, efficiency, and 
throughput. 
 
Table 2: Schedule obtained by ECHIOA and other 
algorithms for case 2 

 WOA EGA-
TS GSA GA HHG ECHI

OA 
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r
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P
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Figure 8: Comparison of makespan for case 2 
 

 
Figure 9: Comparison of speedup for case 2 
 

 
Figure 10: Comparison of efficiency for case 2 
 

 
Figure 11: Comparison of throughput for case 2 
 
7.3 Case 3 
To analyze the behavior of the ECHIOA, we consider five 
cases with three heterogeneous processors. The tasks are 
20, 30, 50, 70, and 100. The communication cost is equal 
to one, and the computation cost of each task on different 
processors is randomly generated from 1 to 100, 
respectively. The results obtained by ECHIOA are 
compared with the Efficient Cooperation Search 
Algorithm (ECSA) [22]. We ran our proposed algorithm 
and ECSA one more time, and the results obtained by the 
proposed algorithm are shown in Tab. 3, and the results 
obtained by ECSA are shown in Tab. 4. Fig. 12, Fig. 13, 
Fig. 14, and Fig .15 represent the results obtained by 
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ECHIOA and ECSA in terms of makespan, speedup, 
efficiency, and throughput. 
 
Table 3: The results obtained by ECHIOA for case 3 
number 
of tasks makespan speedup efficiency Throughput 

20 451 1.90 0.63 0.04 
30 636 1.95 0.65 0.04 
50 1309 1.81 0.60 0.03 
70 1967 1.77 0.59 0.03 
100 2854 1.76 0.58 0.03 
 
Table 4: The results obtained by ECSA for case 3 
numbe
r of 
tasks 

makespa
n 

Speedu
p 

Efficienc
y 

Throughpu
t 

20 380 2.26 0.75 0.05 
30 618 2.0 0.66 0.04 
50 1316 1.80 0.60 0.03 
70 2127 1.63 0.54 0.03 
100 2916 1.73 0.57 0.03 
 

 
Figure 12: Comparison of makespan for case 3 
 

 
Figure 13: Comparison of speedup for case 3 
 

 
Figure 14: Comparison of efficiency for case 3 
 

 
Figure 15: Comparison of throughput for case 3 

7.3 Discussion 
According to the results in Fig. 4, Fig. 5, Fig. 6, and Fig. 7, 
it is found that the makespan of ECHIOA is reduced by 
22.8% and 12.3% of NGA and PPSO, respectively. The 
speedup of ECHIOA is improved by (29.6%) and (14.1%) 
for NGA and PPSO, respectively. The efficiency of 
ECHIOA is improved by (29.6%) and (14.1%) for NGA 
and PPSO, respectively. The throughput of ECHIOA is 
improved by (29.8%) and (15.6%) of NGA and PPSO, 
respectively. According to the results in Fig. 8, Fig. 9, Fig. 
10, and Fig. 11, it is found that the makespan of ECHIOA 
is reduced by 8.8%, 7.3%, 7.3%, 3.4%, and 3.4% about 
WOA, EGA-TS, GSA, GA, and HHG, respectively. The 
speedup of ECHIOA is improved by (9.7%), (7.9%), 
(7.9%), (3.5%), and (3.5%) of WOA, EGA-TS, GSA, GA, 
and HHG, respectively. The efficiency of ECHIOA is 
improved by (9.6%), (7.8%), (7.8%), (3.4%), and (3.4%) 
of WOA, EGA-TS, GSA, GA, and HHG, respectively. 
The throughput of ECHIOA is improved by (10%), 
(8.6%), (8.6%), (3.5%), and (3.5%) of WOA, EGA-TS, 
GSA, GA, and HHG, respectively. According to the 
results in Fig. 12, Fig. 13, Fig. 14, and Fig. 15, when the 
number of tasks is increased, the ECHIOA outperformed 
the ECSA regarding makespan, speedup, efficiency, and 
throughput. 
 

8. CONCLUSION AND FUTURE WORK 
In order to get near-optimal results for the problem of 
scheduling tasks in the cloud computing environment, 
efficient strategies for the optimal mapping of the tasks are 
required. This paper has presented a new efficient 
approach based on the coronavirus herd immunity 
optimizer algorithm called the efficient coronavirus herd 
immunity optimizer algorithm (ECHIOA) to solve the 
scheduling task problem in the cloud computing 
environment. The system has comprised a small number of 
fully interconnected heterogeneous processors. The 
algorithms have been compared against the algorithms 
according to makespan, speedup, efficiency, and 
throughput. The comparative analysis explained that the 
proposed algorithm performs better in all cases. In our 
future work, we will develop an efficient cuckoo search 
algorithm for optimizing scheduling tasks in a cloud 
computing environment to minimize the makespan and 
cost and maximize the speedup, efficiency, throughput, 
and resource utilization. 
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