
Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5686

Task Scheduling Optimization in Cloud
Computing by Coronavirus Herd Immunity

Optimizer Algorithm
Ahmed Y. Hamed

Faculty of Computers and Artificial Intelligence, Department of Computer Science, Sohag University, Sohag, 82524,
Egypt

Email: ayhamedd@gmail.com
M. Kh. Elnahary

Faculty of Computers and Artificial Intelligence, Department of Computer Science, Sohag University, Sohag, 82524,
Egypt

Email: mk409055@gmail.com
Hamdy H. El-Sayed

Faculty of Computers and Artificial Intelligence, Department of Computer Science, Sohag University, Sohag, 82524,
Egypt

Email: hamdy2006x@gmail.com

---ABSTRACT---
Cloud computing is now dominant in high-performance distributed computing, offering resource polling and on-
demand services over the web. So, the task scheduling problem in a cloud computing environment becomes a
significant analysis space due to the dynamic demand for user services. The primary goal of scheduling tasks is to
allocate tasks to processors to achieve the shortest possible makespan while respecting priority restrictions. In
heterogeneous multiprocessor systems, task and schedule assignments significantly impact the system's operation.
Therefore, the different processes within the heuristic-based scheduling task algorithm will lead to a different
makespan on a heterogeneous computing system. Thus, a suitable algorithm for scheduling should set precedence
efficiently for every subtask based on the resources required to reduce its makespan. This paper proposes a novel
efficient scheduling task algorithm based on the coronavirus herd immunity optimizer algorithm to solve task
scheduling problems in a cloud computing environment. The basic idea of this method is to use the advantages of
meta-heuristic algorithms to get the optimal solution. We evaluate the performance of our algorithm by applying
it to three cases. The collected findings suggest that the proposed strategy successfully achieved the best solution
in terms of makespan, speedup, efficiency, and throughput compared to others. Furthermore, the results
demonstrate that the suggested technique beats existing methods new genetic algorithm (NGA), proposed particle
swarm optimization (PPSO), whale optimization algorithm (WOA), enhanced genetic algorithm for task
scheduling (EGA-TS), gravitational search algorithm (GSA), genetic algorithm (GA), and hybrid heuristic and
genetic (HHG) by 22.8%, 12.3%, 8.8%, 7.3%, 7.3%, 3.4%, and 3.4% respectively according to makespan.

Keywords -Cloud Computing, Coronavirus Herd Immunity Optimizer Algorithm, Heterogeneous
Processors, Task Scheduling.
--
Date of Submission: March 20,2023 Date of Acceptance: April 26,2023
--
1. INTRODUCTION

As Internet access and extensive data become more
freely available, cloud computing is becoming more
prevalent in today's business environment. Compared to
prior systems of distributed computing, for example, grid
and cluster computing, cloud computing has created a
more elastic and scalable method of delivering services to
users. Consumers are not required to own the underlying
technology and can use platforms and resources for
computing on a pay-per-use basis. The basic idea behind
cloud computing is to delegate computing work to a
resource pool of many virtual machines or heterogeneous
virtualized servers. Because cloud computing is a market-
oriented utility, enhanced scheduling resources, which
may support workflows, tasks, user applications, software,

etc., are constantly required to maximize the users' and
cloud providers' profits. Indeed, scheduling may directly
impact a system's performance, such as operating cost,
efficiency, and resource utilization, and it is seen as
critical in cloud computing. Because virtual machines
(VMs) may be given, assigned, and managed dynamically,
cloud computing scheduling difficulties can be divided
into two groups. The first is a virtual machine and
mapping host that creates or migrates a virtual machine to
a suitable host. The second is scheduling user-submitted
tasks and mapping them to a set of available virtual
machine resources [1].
To solve the scheduling task problem in a cloud
computing environment, we have presented in this paper a
new efficient approach based on the coronavirus herd
immunity optimizer algorithm called the efficient

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5687

coronavirus herd immunity optimizer algorithm
(ECHIOA) to minimize the makespan of the user requests
on the resources and maximize the speedup, efficiency,
and throughput. In the coronavirus herd immunity
optimizer algorithm, the representation of a vector is a
continuous value, so we use five methods to convert the
continuous value to a discrete value. We assess our
algorithm's performance by running it through three cases.
The results show that the proposed method found the best
solutions faster and more efficiently than other algorithms
regarding makespan, speedup, efficiency, and throughput.
The paper is organized as follows: The notations are
presented in section 2. The related work is provided in
Section 3. A description of the problem is given in Section
4. The coronavirus herd immunity optimizer algorithm is
given in Section 5. Section 6 describes the
ECHIOA approach. The results were obtained by applying
ECHIOA and compared with the other results in Section 7.
Finally, section 8 concludes and offers future work.

2. NOTATIONS

3. RELATED WORK
In recent years, there has been a lot of interest in cloud
computing technologies, both in academics and business.
The potential of cloud computing to supply worldwide
information technology services such as platforms, core
infrastructure, and applications to cloud consumers over
the Internet has fueled its appeal. It also offers on-demand
services and different price packages. On the other hand,
cloud task scheduling is still nondeterministic polynomial
(NP)-complete, and it has become more sophisticated
owing to resource elasticity and on-demand customer
application demand. To remedy this need, this work [2]
proposes a modified harris hawks optimization (HHO)
technique based on simulated annealing (SA) for cloud
task scheduling. The SA is a local search method in the
proposed harris hawks optimization simulated annealing
(HHOSA) strategy to increase the pace of convergence

and solution quality provided by the traditional HHO
algorithm.
The demand for vast processing power and storage space
has been increasing in many industries, and a novel cloud
computing technology has been launched to meet this
demand. Cloud computing technology has grown in
popularity due to its capacity to provide these services
efficiently and cost-effectively. With virtualization,
information technology services have begun to transition
to cloud computing, and virtualization has cleared the path
for infinite resource availability. Because cloud computing
is still in its early stages, additional research is required to
realize its potential fully. More research is needed to
determine how resources and tasks are assigned in a cloud
setting, and it accounts for the quality of service (QoS)
provided by cloud service providers. This study suggests
utilizing the CloudSim toolkit to simulate the performance
cost grey wolf optimization (PCGWO) method to optimize
allocating resources and jobs in the cloud computing
environment. The primary goal is to reduce cost and
processing time in line with the target function [3].
Cloud computing is a technology that uses the Internet in
which all programs and information are housed in a cloud
made up of thousands of intricately connected machines.
The main difficulty for cloud data centers is demonstrating
how millions of requests from end users are examined and
processed accurately and effectively. One of the most
critical concerns in a distributed computing system is the
load-balancing mechanism. Load-balancing solutions are
required to boost the scalability and flexibility of cloud
data centers. Because large-scale resources are available
and a massive number of user requests are in the cloud
computing load-balancing challenge, it is possible that
many researchers evaluated and tackled it as an NP-hard
problem. As a result, earlier researchers offered several
heuristics algorithms, such as the imperialist competitive
algorithm (ICA) and the firefly algorithm (FA), to
overcome the abovementioned difficulty. However, ICA
and FA could achieve an approximately satisfactory result
in handling the cloud computing load-balancing problem;
attaining a better result requires improvements in
makespan, load balancing, central processing unit (CPU)
time, stability, and planning speed. This study aims to
provide a clever metaheuristic method based on ICA and
FA to achieve the desired outcome. In addition, FA's local
search capability can help to improve the ICA algorithm
[4].
Cloud computing technology provides customers with
pay-per-use computer resources without interfering with
the underlying infrastructure. It is regarded as a vital
repository of materials made available to consumers.
Recently, there has been a significant increase in the
desirability of cloud computing systems that rely on on-
demand computing resources, a bill on a pay-as-you-go
basis, and multiplex numerous users on the same physical
infrastructure. Scheduling is a significant issue in cloud
computing since a cloud provider must service various
customers in a cloud environment. As a challenge to
existing technologies, this proposal intends to establish an
optimum job scheduling model in the cloud sector. The

GT It represents the graph of tasks
Tai It represents the task i
Pri It represents the processor i

MM It represents the processor's number
NT It represents the task's number

C(Tai, Taj)
The communication cost between

Tai and Taj
Start_Time(Tai,

Prj)
It represents the task's start time i on

a processor Prj
Finish_Time(Ta

i, Prj)
It represents the task's finish time i

on a processor Prj
Ready_Time(Pri

)
It represents the processor's ready

time i

LT
It represents a list of jobs arranged

in directed acyclic graph topological
order

Data_Arrive(Tai

, Prj)
It represents the time of data arrival

of task i to processor j

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5688

suggested model handles the job scheduling problem by
employing an upgraded meta-heuristic algorithm known as
the fitness rate-based rider optimization algorithm (FR-
ROA), a more sophisticated version of the traditional rider
optimization algorithm (ROA). The maximum makespan
or completion time and the aggregate of the completion
times of whole jobs are the constraints of objectives
considered for optimum task scheduling because the
suggested FR-ROA benefits from achieving convergence
in a short time [5].
Cloud computing is a dynamic and diversified ecosystem
that spans several geographies. It is made up of a plethora
of tasks and computational resources. In the cloud, the
scheduling of task algorithms plays a crucial role in
determining the best virtual machine (VM) for a given job.
The scheduling of the task algorithm is in charge of
lowering the schedule's makespan. In recent years, nature-
inspired algorithms have been used for work scheduling,
outperforming traditional algorithms. The crow search
algorithm (CSA) is presented in this study [6] for job
scheduling in the cloud. Crows' food-gathering behaviors
inspired it. In actuality, the crow continues to scan its
surroundings for a better food source than its present one.
As a result, the CSA selects an appropriate VM for the job
and reduces the makespan.
One of the most challenging difficulties in cloud
computing is efficient task scheduling. Because scheduling
tasks is an NP-complete issue, finding the optimum
solution is difficult, especially for large task sizes. Several
jobs in the cloud computing environment may need to be
efficiently scheduled on numerous virtual machines while
reducing makespan and concurrently optimizing resource
consumption. We introduce a unique hybrid antlion
optimization method with elite-based differential evolution
to handle multi-objective work scheduling issues in cloud
computing settings. The multi-objective aspect of the
problem in the proposed solution, which we term multi-
objective antlion optimizer (MALO), stems from the
necessity to decrease makespan while optimizing resource
consumption concurrently. The antlion optimization
algorithm was modified using a regional search strategy to
boost its exploitation capabilities and prevent it from
becoming stuck in local optima. Elite-based differential
evolution is used [7].
Cloud computing is the rebel of worldwide networked
resources and effortlessly shares data with users. With the
extensive availability of network technology, user
demands are increasing daily. The most significant issue in
cloud technology now is task scheduling. Cargo position
and task arrangement are critical criteria in the cloud
domain that might guarantee QoS. In this study, the
authors developed the optimal energy consumption
reduction and makespan scheduling tasks using the local
pollination-based gray wolf optimizer (LPGWO)
algorithm. The gray wolf optimizer (GWO) and flower
pollination algorithm (FPA) are merged and employed in
the hybrid idea. In the presence of GWO, the optimal
searching factor is employed to accelerate convergence.
The FPA is used to distribute data to the following

candidate packet solutions using the local pollination idea
[8].

4. PROBLEM DESCRIPTION
The task scheduling model during this work is defined as
distributed tasks to be implemented on processors. The
processors may be different in general. A graph of tasks
(GT) may be mapped to describe the problem structure.
GT is a directed acyclic graph (DAG) of tasks: Ta1, Ta2,
Ta3, etc... Tan. Every node in the graph is termed a task. A
task is assumed to be a series of instructions that must be
carried out in a specific order by an assigned processor. A
task (node) might have pre-demanded data (inputs) before
implementation. The task may be activated to begin
execution when all inputs have been received. These
inputs are expected to be delivered after some other tasks
are implemented, as these tasks evaluate them. We call
this relying on task dependency. If a task depends on other
tasks' data, we consider that task as the parent of the task,
and the task is their child. A task with no parents is an
entry task, while a task with no children is referred to as an
exit task [9]. The time of execution of a task is the
computation cost. Whenever the computation cost of a
task Tai is represented by weight (Tai, Prj), the task graph
also contains directed edges, representing a partial order of
the tasks. The partial order establishes a DAG with a
precedence constraint and indicates that if (Tai → Taj),
then Taj is a child. The child cannot begin until its parent
Tai has finished. The weight on edge represents the
communication cost between the tasks and is represented
by C(Tai, Taj). The communication cost is considered only
if Tai and Taj are allocated to different processors;
otherwise, it equals zero. In that case, Tai and Taj are
assigned to the same processor. If a node Tai is assigned to
processor Prj, the start time of the task and the finish time
are represented by Start_Time(Tai, Prj) and
Finish_Time(Tai, Prj), respectively. After scheduling the
tasks, the makespan is defined as the max
{Finish_Time(Tai, Prj)} across all processors. The
scheduling problem is to find a schedule of the tasks in the
processors such that the makespan is decreased over
possible schedules where the task dependency constraints
are preserved. Task dependency constraints state that any
task can't start until all parents have finished. Assume that
Prj is the processor and that the KPth parent task Takp of
task Tai is scheduled. The data-arrival of Tai at processor
Prj is when the per-demanded data for the task execution
becomes available. This is defined in [9] by the following:
Data_Arrive(Tai, Prj) = max{Finish_Time(Takp , Prj) +
C(Tai , Takp)} where kp = 1, 2, 3,…. Parent_Number.

5. ALGORITHM FOR CORONAVIRUS HERD
IMMUNITY OPTIMIZER
coronavirus herd immunity optimizer (CHIO) is depicted
as a series of stages, which are extensively detailed below.
The suggested optimization technique is based on herd
immunity [10]. The method comprises six major phases,
which are described below:
Step 1: Set the settings for coronavirus herd immunity and
the problem of optimization. The issue of optimization is

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5689

framed in the context of the objective function, as shown
in this step:
min
௬
 y ϵ [LOB, UPB] (1)(ݕ)݃

CHIO includes two parameters of control and four
algorithmic techniques. The objective function g(y) is
derived for the case y = (y1, y2,..., yn), where yi is the
decision variable or gene indexed by n, and i is the overall
total of genes in every individual. It is worth noting that
the value range of every gene yi is [LOB, UPB], with LOB
and UPB being the lowest and upper boundaries of gene
yi. The four algorithmic parameters are:
W0: This shows the number of first infected instances in
this scenario, where it begins with one.
Maximum_Iter: This denotes the maximum number of
iterations that may be performed.
Pops: This represents the population size.
n: This indicates the problem's dimensionality.
In this phase, the CHIO's two major control parameters
must be initialized:
The rate of essential reproduction (BRr) governs the CHIO
operators by propagating the viral pandemic among
people.
The maximum age of infected cases (Maximum_age): It
controls the state of infected patients, with those reaching
their maximum age either recovering or dying.
Step 2: Create a population of herd immunity. Initially,
CHIO produces a collection of individuals or instances as
prominent as Pops at random or heuristically. The created
cases are saved in the herd immunity population (HI_Pop)
as a matrix of two dimensions and size (n * Pops), such as:

HI_Pop =቎
ଵଵݕ ⋯ ௡ଵݕ
⋮ … . ⋮

ଵݕ
௉௢௣௦ ⋯ ௡ݕ

௉௢௣௦
቏(2)

And every row j represents a case yj, which is produced as
follows:
௜ݕ
௝= LOB + (UPB-LOB) * P(0,1), where i=1, 2, . . .,n. Eq.

1 is used to compute every case's objective function or rate
of immunity. Furthermore, the vector of status (ST) of
length Pops for every case in HI_Pop is begun by either
one infected case or zero susceptible cases. It is worth
noting that the number in (ST) is chosen randomly and can
be as high as W0.
Step 3: Evolution of the coronavirus herd immunity. It is
the primary improvement loop for CHIO. The gene (y୧

୨) of
case yj is either unchanged or modified by social distance
according to three rules based on the fraction of the BRr,
as follows:

௜ݕ
௝(u+1) =

⎩
⎪
⎨

⎪
⎧ ௜ݕ

௝(ݑ)݊ܽݎ ≥ ݎܴܤ

ܮ ቀݕ௜
௝(ݑ)ቁ݊ܽݎ < ଵ

ଷ
∗ ݎܴܤ

ܱ ቀݕ௜
௝(ݑ)ቁ ݊ܽݎ < ଶ

ଷ
∗ ݎܴܤ

ܧ ቀݕ௜
௝(ݑ)ቁ݊ܽݎ < ݎܴܤ

(3)

Where ran generates a number between 0 and 1 at random.
The following are the three rules to consider:
In the infected case: the range of ran ߳ ቂ0, ଵ

ଷ
 the value ,(ݎܴܤ

of the new gene of ݕ௜
௝(ݑ + 1) is influenced by some social

distance caused by the difference between the gene

extracted from an infected case ym and the present gene,
such as:
௜ݕ
௝(ݑ + 1)= L(ݕ௜

௝(u) (4)
Where
L(ݕ௜

௝(u)) = ݕ௜
௝(u) + ran * (ݕ௜

௝(u) - ݕ௜௖(u)) (5)
It should be noted that the value ݕ௜௖(u) is picked at random
from any infected case yc based on the vector of status
(ST) such that c = {݅|ܵ ௜ܶ = 1}.
In susceptible case: the range of ran ߳ ቂଵ

ଷ
, ݎܴܤ ଶ

ଷ
 the ,(ݎܴܤ

value of the new gene ݕ௜
௝(u+1) is influenced by some

social distance caused by the difference between the gene
extracted from a susceptible case ym and the present gene,
such as:
௜ݕ
௝(u+1) = O(ݕ௜

௝(u)) (6)
Where
O(ݕ௜

௝(u)) = ݕ௜
௝(u) + ran * (ݕ௜

௝(u) -ݕ௜௠(u)) (7)
It should be noted that the value ݕ௜௠(u)is randomly
distributed from any susceptible case ym depending on the
vector of status (ST), such that m = {݅|ܵ ௜ܶ = 0}.
In the immune case: the range of ran ߳ ቂଶ

ଷ
 the,(ݎܴܤ,ݎܴܤ

value of the new gene ݕ௜
௝(u+1) is influenced by some

social distance caused by the difference between the gene
extracted from an immune case yv and the present gene,
such as:
௜ݕ
௝(u+1) = E(ݕ௜

௝(u)) (8)
where
E(ݕ௜

௝(u)) = ݕ௜
௝(u) + ran * (ݕ௜

௝(u)-ݕ௜௩(u)) (9)
It should be noted that the value ݕ௜௩(u) is distributed from
the best immune case yv depending on the vector of status
(ST) in such a way that:
g(yv) = arg min

௝~ ൛݇หܵ ௞ܶ = 2ൟ
 (10)(௝ݕ)݃

Step 4: Update the population of herd immunity. The rate
of immunity g(ݕ௝(ݑ + 1)) of every created case ݕ ௝(ݑ +
1) is computed, and the present case ݕ௝(ݑ) is substituted
with the created case ݕ௝(ݑ + 1), if better, such as
g(ݕ௝(ݑ + 1)) < g(ݕ௝(ݑ)) if ܵ ௝ܶ=1, the age vector ܣ௝
increased by one.
For each case ݕ௝, the status vector (ܵ ௝ܶ) is updated
depending on the threshold of the herd immune, which is
calculated using the following equation:
 =࢐ࢀࡿ

ቐ
૚ g ቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

(࢟)ࢍ∆
∧ ࢐ࢀࡿ = ૙ ∧ ݑ)௝ݕ)ࢇ࢔࢕࢘࢕ࢉ࢙࢏ + 1))

૛ g ቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)
(࢟)ࢍ∆

 ∧ ࢐ࢀࡿ = ૚

 ….(11)
where iscorona(ݕ௝(ݑ + 1)is a value in binary, and it is
equal to one when the new case ݕ௝(ݑ + 1)inherits a value
from any infected case. The ∆g(y) is the mean value of the

population immunity rates, which is expressed as∑ ೒(೤೔)
ು೚೛ೞ
೔సభ
ು೚೛ೞ

. It should be noted that if the newly created individual
rate of immunity is higher than the population's average
rate of immunity, the immunity rate of the individuals in
the population will be adjusted depending on the
previously determined social distance. It suggests that our
people are becoming more immune. We have reached the

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5690

herd immunity threshold if the freshly produced
population is immune to the pandemic.
Step 5: Cases of death If the present infected case (ܵ ௝ܶ==
1) immunity rate g(ݕ௝(ݑ + 1)) doesn't improve after a
given number of iterations as indicated by the parameter
Maximum_age (i.e., Aj >= Maximum_ age). This case is
declared dead. It is then recreated from scratch using
௜ݕ
௝(ݑ + 1)= LOB + (UPB-LOB) * P(0,1), where i=1, 2,

3,...,n. In addition, Aj and STj are also set to zero. It can
benefit diversifying and avoiding local optima and the
present population.
Step 6: The criteria for stopping CHIO continue Steps 3–6
until the termination measure is met, which generally
depends on whether the maximum number of iterations is
met. In this situation, the population is mainly determined
by the total number of immune and susceptible cases, and
infected cases have vanished.

Algorithm CHIO
Initialize the parameters (Pops, Maximum_age, W0,
Maximum_iter, BRr)
Generate the population By using ݕ௜

௝= LOB + (UPB-LOB)
* P(0,1)
Compute the fitness function
Put STj=Aj =0 j= 1,2,…., Pops
While (t<= Maximum_iter)
 For j=1: Pops
 iscorona(ݕ ௝(ݑ + 1))= false
 For i=1: N
 If (ran < 1/3 * BRr)
 Use Eq. 4, and Eq. 5
 Iscorona(ݕ௝(ݑ + 1))= true
 Else if (ran < 2/3 * BRr)
 Use Eq. 6 and Eq. 7
 Else if (ran < BRr)
 Use Eq. 8 and Eq. 9
 Else
௜ݕ
௝(ݑ + ௜ݕ = (1

௝(u)
 End if
 End for
 If (gቀݕ௝(ݑ + 1)ቁ<= g ቀݕ௝(ݑ)ቁ
ݕ =(ݑ)௝ݕ ᇱ௝(ݑ + 1)
 Else
 Aj= Aj+1
 End if
 If (g ቀݕ ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬) ∧ ܵ ௝ܶ = 0 ∧
ݑ)௝ݕ)ܽ݊݋ݎ݋ܿݏ݅ + 1))
 STj=Aj=1
 End if
 If (gቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬) ∧ ܵ ௝ܶ = 1)
 STj=2
 Aj=0
 End if
 If ((Aj >= Maximum_age) ∧ (STj==1))
௜ݕ
௝(ݑ + 1)= LOB + (UPB-LOB) * P(0,1)

 STj=Aj=0
 End if

End for
t=t+1
End while

6. THE PROPOSED ALGORITHM
We see that the representation of a vector is a continuous
value, so we will use the smallest position value (SPV)
rule [11] and the largest position value (LPV) rule [12].
After using the SPV or LPV, we will use the modulus
function with the number of processors and increase the
value by one, as shown in Fig. 1 and Fig. 2.

1.5 2.1 1.3 1.8 3.0 2.5 1.2

7 3 1 4 2 6 5
SPV

2 1 2 2 3 1 3
Modulus with SPV and number of processors=3

Figure 1: An example of the proposed schedule with the
SPV rule

1.5 2.1 1.3 1.8 3.0 2.5 1.2

5 6 2 4 1 3 7
LPV

Modulus with LPV and number of processors=3

Figure 2: An example of the proposed schedule with the
LPV rule

Figure 3: Proposed schedule

The tasks Ta2 and Ta6 are scheduled on processor one. The
tasks Ta4, Ta5, and Ta7 are scheduled on processor two.
Finally, the tasks Ta1 and Ta3 are scheduled on processor
three, as shown in Fig. 3.

The proposed algorithm
Input: DAG's computation cost and communication cost
Output: the best solution
Initialize the parameters (Pops, Maximum_age, W0,
Maximum_iter, BRr, LOB, UPB)
Generate the population By using ݕ௜

௝= LOB + (UPB-LOB)
* P(0,1)
Convert the population by using Algorithm 2
Calculate the objective function by using Algorithm 1
Calculate the fitness function
Put STj=Aj =0 j= 1,2,…., Pops
t=1
While (t<= Maximum_iter)
 For j=1: Pops
 iscorona(ݕ௝(ݑ + 1))= false

3 1 3 2 2 1 2

3 1 3 2 2 1 2

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5691

 For i=1: N
 If (ran < 1/3 * BRr)
 Use equations Eq. 4 and Eq. 5
 iscorona(ݕ௝(ݑ + 1))= true
 Else if (ran < 2/3 * BRr)
 Use equations Eq. 6 and Eq. 7
 Else if (ran < BRr)
 Use equations Eq. 8 and Eq. 9
 Else
௜ݕ
௝(ݑ + ௜ݕ = (1

௝(u)
 End if
 End for
 Convert the obtained solution by using Algorithm 2
 Calculate the objective function by using Algorithm 1
 Calculate fitness function
 If (gቀݕ௝(ݑ + 1)ቁ<= g ቀݕ௝(ݑ)ቁ
ݕ =(ݑ)௝ݕ ᇱ௝(ݑ + 1)
 Else
 Aj= Aj+1
 Endif
 If (g ቀݕ ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬) ∧ ܵ ௝ܶ = 0 ∧
ݑ)௝ݕ)ܽ݊݋ݎ݋ܿݏ݅ + 1))
 STj=Aj=1
 End if
 If (gቀݕ௝(ݑ + 1)ቁ < ୥(௬)ೕ(௨ାଵ)

∆௚(௬) ∧ ܵ ௝ܶ = 1)
 STj=2
 Aj=0
 End if
 If ((Aj >= Maximum_age) ∧ (STj==1))
௜ݕ
௝(ݑ + 1)= LOB + (UPB-LOB) * P(0,1)

 STj=Aj=0
 End if
 End for
t=t+1
End while

Algorithm 1: Calculate the objective function of the task
schedule using the Standard Genetic Algorithm (SGA) [9]
Input the schedule of tasks as shown in Fig. 3
Output the makespan
Ready_Time[Prj] = 0 where j = 1, 2, ……MM.
For i = 1 : NT
{
 Take the first task Tai to be executed from LT and
remove it.
 For j = 1 : MM
 {
 If Tai is scheduled to processor Prj
 Start_Time(Tai, Prj) = max{Ready_Time(Prj),
Data_Arrive (Tai, Prj)}
 Finish_Time(Tai, Prj) = Start_Time(Tai, Prj) +
weight(Tai, Prj)
 Ready_Time(Prj) = Finish_Time(Tai, Prj)
 End If
 }
}
makespan = max(Finish_Time)

Algorithm 2: The function that converts a continuous
value to a discrete value
Function Convert (s)
R = random number between [1:5]
If (R == 1)
 Use the SPV rule to convert a continuous value
Else if (R == 2)
 Use the LPV rule to convert a continuous value
Else if (R == 3)
 Use the round nearest function to convert a
continuous value
Else if (R == 4)
 Use the floor nearest function to convert a
continuous value
Else
 Use ceil nearest function to convert a continuous
value

End if
End Function

As shown above, Algorithm 1 is used to compute the
makespan by taking the schedule after converting it by
Algorithm 2, which detects the method used to convert the
continuous value to a discrete value by generating a
random number. The proposed algorithm uses the
operation of the Coronavirus Herd Immunity Optimization
Algorithm to find the best solution for the makespan. We
can see that speedup, efficiency, and throughput value
depend on the makespan, and the more minor the
makespan, the higher the speedup, efficiency, and
throughput.

7. EVALUATION OF ECHIOA
We show the performance of ECHIOA by applying it to
two cases. The first case is of 10 tasks and three
heterogeneous processors. The second case consists of 10
tasks and three heterogeneous processors. ECHIOA was
implemented as a system by MATLAB 2016. We set the
initial values of the parameters Pops = 100, Maximum_age
= 100, W0 = 1, Maximum_iter = 100, LOB = 1, UPB = 3,
and BRr = 0.05.

Speedup is the ratio between the results obtained by
assigning all tasks to a virtual machine that gives the
minimum schedule length and the results obtained by
executing tasks in parallel [13].
Speedup = min

୮୰ౠ
 (∑

୵ୣ୧୥୦୲౟ ,ౠ
୑ୟ୩ୣୱ୮ୟ୬୘ୟ౟)(12)

Efficiency is the ratio between the obtained speedup
results and the total number of virtual machines used [13].
Efficiency = ୗ୮ୣୣୢ୳୮

୑୑
(13)

Throughput: The value of the throughput metric can be
defined as the number of tasks executed per unit of time
[14].
Throughput = ୒୘.

୑ୟ୩ୣୱ୮ୟ୬
 (14)

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5692

7.1 Case 1
We consider a case of 10 tasks {Ta1, Ta2, Ta3, Ta4, Ta5,
Ta6, Ta7, Ta8, Ta9, Ta10} to be executed on three
heterogeneous processors {Pr1, Pr2, Pr3}. The cost of
executing every task on different processors is shown in
[13]. Tab. 1 represents each task's start and finish times on
different processors and the schedule obtained by
ECHIOA and other algorithms. The results obtained by
ECHIOA are compared with those obtained by the new
genetic algorithm (N-GA) [15] and proposed particle
swarm optimization (PPSO) [16]. The proposed task
priority of ECHIOA {Ta1, Ta4, Ta3, Ta2, Ta6, Ta7, Ta5, Ta9,
Ta8, Ta10}, task priority of N-GA {Ta1, Ta4, Ta2, Ta3, Ta7,
Ta5, Ta6, Ta9, Ta8, Ta10}, task priority of PPSO {Ta1, Ta2,
Ta3, Ta4, Ta5, Ta6, Ta7, Ta8, Ta9, Ta10}. Fig. 4, Fig. 5, Fig.
6, and Fig. 7 represent the results obtained by ECHIOA,
N-GA, and PPSO in terms of makespan, speedup,
efficiency, and throughput.

Table 1: Schedule obtained by ECHIOA and other
algorithms for case 1

 N-GA PPSO ECHIOA

 Pr1 Pr2 Pr3 Pr1 Pr2 Pr
3

Pr
1

Pr2 Pr
3

Ta1 0-
4

0-
7 0-

7

Ta2
32
-
50

7-
14

30
-
37

Ta3 43-
60

14
-
31

13
-
30

Ta4 4-
32

31
-
37

 7-
13

Ta5 61-
78 32-

49 48-
65

Ta6
62
-
89

37
-
72

33
-
60

Ta7
60-
66

72
-
78

37
-
43

Ta8
113
-
133

84
-
10
4

 79-
119

Ta9

97
-
11
3

109
-
142

74
-
90

Ta1

0

163
-
175

142
-
154

123
-
135

Figure 4: Comparison of makespan for case 1

Figure 5: Comparison of speedup for case 1

Figure 6: Comparison of efficiency for case 1

Figure 7: Comparison of throughput for case 1

7.2 Case 2
In this case, the tasks {Ta1, Ta2, Ta3, Ta4, Ta5, Ta6, Ta7,
Ta8, Ta9, Ta10} are executed on three heterogeneous
processors {Pr1, Pr2, Pr3}. The cost of executing every task
on different processors is shown in [9]. Tab. 2 represents
each task's start and finish time on different processors and
the schedule obtained by ECHIOA and other algorithms.
The results obtained by ECHIOA are compared with the
whale optimization algorithm (WOA) [17], gravitational
search algorithm (GSA) [18], enhanced genetic algorithm
for task scheduling (EGA-TS) [19], genetic algorithm
(GA) [20], and hybrid heuristic and genetic (HHG) [21].
The proposed task priority of ECHIOA { Ta1, Ta6, Ta4,
Ta5, Ta2, Ta3, Ta8, Ta9, Ta7, Ta10}, task priority of WOA
{Ta1, Ta3, Ta5, Ta2, Ta4, Ta6, Ta7, Ta8, Ta9, Ta10}, task
priority of EGA-TS {Ta1, Ta3, Ta5, Ta2, Ta4, Ta6, Ta7, Ta8,
Ta9, Ta10}, task priority of GSA {Ta1, Ta3, Ta2, Ta6, Ta4,
Ta5, Ta7, Ta8, Ta9, Ta10}, task priority of GA {Ta1, Ta2,
Ta4, Ta5, Ta9, Ta3, Ta7, Ta6, Ta8, Ta10}, task priority of
HHG {Ta1, Ta2, Ta6, Ta3, Ta4, Ta5, Ta8, Ta7, Ta9, Ta10}.
Fig. 8, Fig. 9, Fig. 10, and Fig .11 represent the results
obtained by ECHIOA, WOA, EGA-TS, GSA, GA, and

0

100

200

N-GA PPSO ECHIOA

M
ak

es
pa

n

0

1

2

N-GA PPSO ECHIOA

Sp
ee

du
p

0

0.2

0.4

0.6

N-GA PPSO ECHIOA

Ef
fic

ie
nc

y

0

0.05

0.1

N-GA PPSO ECHIOA

Th
ro

ug
hp

ut

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5693

HHG in terms of makespan, speedup, efficiency, and
throughput.

Table 2: Schedule obtained by ECHIOA and other
algorithms for case 2

 WOA EGA-
TS GSA GA HHG ECHI

OA

P
r
1

P
r
2

P
r
3

P
r
1

P
r
2

P
r
3

P
r
1

P
r
2

P
r
3

P
r
1

P
r
2

P
r
3

P
r
1

P
r
2

P
r
3

P
r
1

P
r
2

P
r
3

T
a
1

0
-

2
1

0
-
2
1

0
-
2
1

0
-
2
2

0
-
2
1

0
-
2
1

T
a
2

3
8
-
5
6

3
8

–

6
0

3
8
-
5
8

2
2
-
4
4

2
1
-
3
9

2
1
-
3
9

T
a
3

2
1
-
4
8

2
1
-
4
8

2
1

–
4
8

4
4
-
7
6

3
9
-
6
6

3
9
-
6
6

T
a
4

4
8
-
5
8

4
8
-
5
8

5
0
-
5
7

5
1
-
6
1

5
0
-
5
4

6
4
-
7
1

T
a
5

3
4
-
6
3

3
4
-
6
9

5
6
-
9
1

3
5
-
7
0

5
4
-
8
9

3
4
-
6
9

T
a
6

5
8
-
7
5

5
8
-
7
5

4
8
-
6
5

6
1
-
7
8

3
8
-
6
4

3
8
-
6
4

T
a
7

6
4
-
7
8

7
5
-
1
0
0

6
4
-
7
8

7
6
-
9
0

6
6
-
9
1

6
6
-
9
1

T
a
8

7
5
-
9
8

8
0
-
1
0
9

6
8
-
9
1

7
8
-
1
0
1

6
5
-
9
4

7
1
-
1
0
0

T
a
9

8
6
-
1
0

9
0
-
9
8

9
1
-
9
9

7
4
-
8
2

8
9
-
9
7

7
8
-
8
6

1

T
a
1

0

1
0
8
-
1
2
4

1
0
9
-
1
2
2

1
0
6
-
1
2
2

1
0
1
-
1
1
7

1
0
4
-
1
1
7

1
0
0
-
1
1
3

Figure 8: Comparison of makespan for case 2

Figure 9: Comparison of speedup for case 2

Figure 10: Comparison of efficiency for case 2

Figure 11: Comparison of throughput for case 2

7.3 Case 3
To analyze the behavior of the ECHIOA, we consider five
cases with three heterogeneous processors. The tasks are
20, 30, 50, 70, and 100. The communication cost is equal
to one, and the computation cost of each task on different
processors is randomly generated from 1 to 100,
respectively. The results obtained by ECHIOA are
compared with the Efficient Cooperation Search
Algorithm (ECSA) [22]. We ran our proposed algorithm
and ECSA one more time, and the results obtained by the
proposed algorithm are shown in Tab. 3, and the results
obtained by ECSA are shown in Tab. 4. Fig. 12, Fig. 13,
Fig. 14, and Fig .15 represent the results obtained by

100

110

120

130

WOA EGA-TS GSA GA HHG ECHIOA

M
ak

es
pa

n
1.5
1.6
1.7
1.8
1.9

WOA EGA-TS GSA GA HHG ECHIOA
Sp

ee
du

p

0.5
0.55

0.6
0.65

WOA EGA-TS GSA GA HHG ECHIOA

Ef
fic

ie
nc

y

0.075

0.08

0.085

0.09

WOA EGA-TS GSA GA HHG ECHIOATh
ro

ug
hp

ut

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5694

ECHIOA and ECSA in terms of makespan, speedup,
efficiency, and throughput.

Table 3: The results obtained by ECHIOA for case 3
number
of tasks makespan speedup efficiency Throughput

20 451 1.90 0.63 0.04
30 636 1.95 0.65 0.04
50 1309 1.81 0.60 0.03
70 1967 1.77 0.59 0.03
100 2854 1.76 0.58 0.03

Table 4: The results obtained by ECSA for case 3
numbe
r of
tasks

makespa
n

Speedu
p

Efficienc
y

Throughpu
t

20 380 2.26 0.75 0.05
30 618 2.0 0.66 0.04
50 1316 1.80 0.60 0.03
70 2127 1.63 0.54 0.03
100 2916 1.73 0.57 0.03

Figure 12: Comparison of makespan for case 3

Figure 13: Comparison of speedup for case 3

Figure 14: Comparison of efficiency for case 3

Figure 15: Comparison of throughput for case 3

7.3 Discussion
According to the results in Fig. 4, Fig. 5, Fig. 6, and Fig. 7,
it is found that the makespan of ECHIOA is reduced by
22.8% and 12.3% of NGA and PPSO, respectively. The
speedup of ECHIOA is improved by (29.6%) and (14.1%)
for NGA and PPSO, respectively. The efficiency of
ECHIOA is improved by (29.6%) and (14.1%) for NGA
and PPSO, respectively. The throughput of ECHIOA is
improved by (29.8%) and (15.6%) of NGA and PPSO,
respectively. According to the results in Fig. 8, Fig. 9, Fig.
10, and Fig. 11, it is found that the makespan of ECHIOA
is reduced by 8.8%, 7.3%, 7.3%, 3.4%, and 3.4% about
WOA, EGA-TS, GSA, GA, and HHG, respectively. The
speedup of ECHIOA is improved by (9.7%), (7.9%),
(7.9%), (3.5%), and (3.5%) of WOA, EGA-TS, GSA, GA,
and HHG, respectively. The efficiency of ECHIOA is
improved by (9.6%), (7.8%), (7.8%), (3.4%), and (3.4%)
of WOA, EGA-TS, GSA, GA, and HHG, respectively.
The throughput of ECHIOA is improved by (10%),
(8.6%), (8.6%), (3.5%), and (3.5%) of WOA, EGA-TS,
GSA, GA, and HHG, respectively. According to the
results in Fig. 12, Fig. 13, Fig. 14, and Fig. 15, when the
number of tasks is increased, the ECHIOA outperformed
the ECSA regarding makespan, speedup, efficiency, and
throughput.

8. CONCLUSION AND FUTURE WORK
In order to get near-optimal results for the problem of
scheduling tasks in the cloud computing environment,
efficient strategies for the optimal mapping of the tasks are
required. This paper has presented a new efficient
approach based on the coronavirus herd immunity
optimizer algorithm called the efficient coronavirus herd
immunity optimizer algorithm (ECHIOA) to solve the
scheduling task problem in the cloud computing
environment. The system has comprised a small number of
fully interconnected heterogeneous processors. The
algorithms have been compared against the algorithms
according to makespan, speedup, efficiency, and
throughput. The comparative analysis explained that the
proposed algorithm performs better in all cases. In our
future work, we will develop an efficient cuckoo search
algorithm for optimizing scheduling tasks in a cloud
computing environment to minimize the makespan and
cost and maximize the speedup, efficiency, throughput,
and resource utilization.

REFERENCES
[1] X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu et al., A

woa-based optimization approach for task scheduling
in cloud computing systems,IEEE Systems Journal,
14(3), 2020, 3117–3128.

[2] I. Attiya, M. Abd Elaziz and S. Xiong, Job
scheduling in cloud computing using a modified
harris hawks optimization and simulated annealing
algorithm,Computational Intelligence and
Neuroscience, 2020(1), 2020, 1-17.

[3] G. Natesan and A. Chokkalingam, An improved grey
wolf optimization algorithm based task scheduling in
cloud computing environment, The International
Arab Journal of Information Technology, 17(1),

0

2000

4000

20 30 50 70 100

M
ak

es
pa

n

number of tasks

ECSA

ECHIOA

0

2

4

20 30 50 70 100Sp
ee

du
p

number of tasks

ECSA

ECHIOA

0

0.5

1

20 30 50 70 100

Ef
fic

ie
nc

y

number of tasks

ECSA

ECHIOA

0

0.05

0.1

20 30 50 70 100

T
hr

ou
gh

pu
t

number of tasks

ECSA

ECHIOA

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 06 Pages: 5686 - 5695 (2023) ISSN: 0975-0290

5695

2020, 73-81.
[4] S.M.G. Kashikolaei, A.A.R. Hosseinabadi, B. Saemi,

M.B. Shareh, A.K. Sangaiah et al., An enhancement
of task scheduling in cloud computing based on
imperialist competitive algorithm and firefly
algorithm,Journal of Supercomputing, 76(8), 2020,
6302–6329.

[5] A. Alameen and A. Gupta, Fitness rate-based rider
optimization enabled for optimal task scheduling in
cloud,Information Security Journal, 29(6), 2020,
310–326.

[6] KR Prasanna Kumar and K. Kousalya, Amelioration
of task scheduling in cloud computing using crow
search algorithm,Neural Computing and
Applications, 32(10), 2020, 5901–5907.

[7] L. Abualigah and A. Diabat, A novel hybrid antlion
optimization algorithm for multi-objective task
scheduling problems in cloud computing
environments,Cluster Computing, 24(1), 2021, 205–
223.

[8] M. Gokuldhev, G. Singaravel and N.R. Ram Mohan,
Multi-objective local pollination-based gray wolf
optimizer for task scheduling heterogeneous cloud
environment,Journal of Circuits, Systems and
Computers, 29(7), 2020, 1–24.

[9] A. Younes, A. BenSalah, T. Farag, F. A.Alghamdi
and U. A. Badawi, Task scheduling algorithm for
heterogeneous multi processing computing
systems,Journal of Theoretical and Applied
Information Technology, 97(12), 2019, 3477-3487.

[10] M. A. Al-Betar, Z. A. A. Alyasseri, M. A. Awadallah
and L. A. Doush, Coronavirus herd immunity
optimizer (CHIO),Neural Computing and
Applications, 33(10), 2021, 5011–5042.

[11] I. Dubey and M. Gupta, Uniform mutation and SPV
rule based optimized PSO algorithm for TSP
problem, in Proc. of the 4th Int. Conf. on Electronics
and Communication Systems, Coimbatore, India,
2017, 168–172.

[12] L. Wang, Q. Pan and F. M. Tasgetiren, A hybrid
harmony search algorithm for the blocking
permutation flow shop scheduling
problem,Computers & Industrial Engineering,
61(1),2011, 76-83.

[13] A. Mishra, M. N. Sahoo and A. Satpathy, H3CSA: A
makespan aware task scheduling technique for cloud
environments,Transactions on Emerging
Telecommunications Technologies,32(10), 2021, 1-
20.

[14] S. Nabi, M. Ibrahim and J. M. Jimenez, DRALBA:
Dynamic and resource aware load balanced
scheduling approach for cloud computing,IEEE
Access, 9(1), 2020, 61283-61297.

[15] B. Keshanchi, A. Souri and N. Navimipour, An
improved genetic algorithm for task scheduling in
the cloud environments using the priority queues:
Formal verification, simulation, and statistical
testing, Journal of Systems and Software, 124(1),
2017, 1-21.

[16] T. Biswas, P. Kuila and A.K. Ray, A novel workflow

scheduling with multi-criteria using particle swarm
optimization for heterogeneous computing
systems,Cluster Computing, 23(4), 2020, 3255–
3271.

[17] S. R. Thennarasu, M. Selvam and K. Srihari, A new
whale optimizer for workflow scheduling in cloud
computing environment,Journal of Ambient
Intelligence Humanized Computing, 12(3),
2020,3807-3814.

[18] T. Biswas, P. Kuila, A. K. Ray and M. Sarkar,
Gravitational search algorithm based novel workflow
scheduling for heterogeneous computing
systems,Simulation Modelling Practice and Theory,
96(1), 2019, 1-21.

[19] M. Akbari, H. Rashidi and SH Alizadeh, An
enhanced genetic algorithm with new operators for
task scheduling in heterogeneous computing
systems,Engineering Applications of Artificial
Intelligence, 61(3), 2017, 35–46.

[20] A. Y. Hamed and M. H. Alkinani, Task scheduling
optimization in cloud computing based on genetic
algorithms,Computers, Materials & Continua, 69(3),
2021, 3289-3301.

[21] M. Sulaiman, Z. Halim, M. Lebbah, M. Waqas and
S. Tu, An evolutionary computing-based efficient
hybrid task scheduling approach for heterogeneous
computing environment,Journal of Grid Computing,
19(1), 2021, 1-31.

[22] A.Y. Hamed, M. K. Elnahary, F. S. Alsubaei and H.
H. El-Sayed, Optimization Task Scheduling Using
Cooperation Search Algorithm for Heterogeneous
Cloud Computing Systems,Computers, Materials &
Continua, 74(1), 2023, 2133-2148.

Biographies and Photographs

A. Younes received his PhD degree in
Sept. 1996 from South Valley
University, Egypt. His research interests
include Artificial Intelligence and
genetic algorithms; specifically, in the
area of computer networks. Recently, he

has started conducting a research in the area of Image
Processing. Currently, he works as an Professor
SohagUniversity, Egypt. Younes always publishes the
outcome of his research in international journals and
conferences.

M. Kh. Elnahary Received the B.S degree
from computer science department, Sohag
University, Egypt. His interests in task
scheduling and computer networks.

Hamdy H. El-Sayed Received the PhD
degree in wireless ad hoc network routing
protocols from computer science
department sohag university Egypt march
,2015. His research interests are in the

areas of ad hoc routing protocols and sensor networks,
Internet of Things, cloud computing and security.

