
Int. J. Advanced Networking and Applications   

Volume: 14 Issue: 04 Pages: 5563-5571 (2023)  ISSN: 0975-0290 

 

 

5563 

CIP- Efficient Method for Mining Frequent 

Itemsets from Data streams using Landmark 

Window Model 
F. Ramesh Dhanaseelan 

Department of Computer Applications, St. Xavier’s Catholic College of Engineering, Chunkankadai - 03  

Email: dhanaseelan@sxcce.edu.in 

M. JeyaSutha 

Department of Computer Applications, St. Xavier’s Catholic College of Engineering, Chunkankadai - 03  
Email: jayasuthaus@rediffmail.com  

-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 

Continuous stream transactions like network monitoring, retail market data analysis and stock market prediction 

need the “frequent patterns” to be detected recurrently. Literature suggests that several pattern mining solutions 

are being developed over years. Still lot of challenges need to be addressed due to rapidness in generation of 

continuous, unbounded and ordered data real time. Hence extraction of frequent patterns from recent data will 

improve the analysis of stream data. In this article, a new landmark window model CIP (candidate indexing and 

pruning) is considered for mining the datasets. CIP allows us to mine over entire history of data streams, which 

improves the accuracy. This article also proposes the candidate indexed sub (CIS)-tree scheme to extract the 

essential information from each incoming transactions of data streams. Our proposal is compared with the 

existing “improved data stream mining” (ISDM) for maximal frequent itemsets algorithm. Extensive 

experimental analyses prove the superiority of the proposed CIP over the popular ISDM in terms of accuracy 

and time complexity for high-speed data stream. This article also covers up a case study where the proposed 

approach is applied for an application called “web prefetching”. 
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I. INTRODUCTION 

The boom in hardware technology in recent years 

has made the assessment of real time data 

continuously. Even though it sounds advantageous, it 
throws up several challenges ahead to the researchers, 

as the data may grow up to infinite and unbounded 

within no span of time (data stream). A lot of vital 

information needs to be processed and recovered 

rapidly in certain applications namely, manufacturing 

flow monitoring, sensor networks, stock exchange, 

and telecommunications. Data mining (DM) is a 

computational process of discovering this vital 

information in an understandable structure for further 

decision making.  

An itemset can be defined as frequent itemset (FI), if 

it takes major portion of the dataset. Frequent 
itemsets (FIs) is a well acknowledged problem in DM 

as it is connected with many important tasks like 

associations [1-3] and clusters [4]. Basic DM task 

would be identifying set of items, products, 

symptoms and characteristics, which often co-occur 

in a huge database [5]. Recently, database and 

knowledge discovery communities have focused on 

new data model, where data arrive in the form of 

continuous data streams. Data streams [6-9] possess 

some computational characteristics, such as unknown 

or unbounded length, possibly very fast arrival rate, 
inability to backtrack over previously arrived data 

elements (only one sequential pass over the data is 

permitted), and a lack of system control over the 

order in which the data arrive. Hence, it will be 

impossible to analyze by capturing the important 

patterns and exceptions. Data stream is classified into 

offline streams and online streams. Offline streams 

are characterized by regular bulk arrivals. Online 

streams are characterized by real-time [10-11] 
updated data that come one by one in time. As the 

number of applications on mining data streams grows 

rapidly, there is an increasing need to perform 

association rule mining [12-13] on stream data.   

There are three data stream processing models, 

namely landmark, sliding Windows and tilted/damped 

Windows. The landmark model mines all FIs over the 

entire history of data stream from a specific time 

point called landmark to present [14-15]. The sliding 

window model finds and maintains FIs in sliding 

windows. Only part of the data streams within the 
sliding window [16-20] is stored and processed at the 

time when the data flow in. The tilted/damped model 

mines FIs in data stream in which each transaction 

[21-24] has a weight and this weight decreases with 

age. Older transactions contribute less weight towards 

itemset frequencies [14], [25-29]. Each of these 

models has its own merits and demerits. However, 

recent literature suggests that relatively less 

contribution made in landmark data streaming. 
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Hence, we have decided to put effort in materializing 

a strong idea in landmark data streaming. 

II. CANDIDATE INDEXING AND 

PRUNING 

The proposed candidate indexing and pruning 

technique is devised to find the FIs from stream 

landmark window. This model is used to mine the 

most FIs [30-32] over the entire history of data 
streams. The frequent patterns are measured from the 

start of the stream upto the current moment. Our 

proposal mines the most FIs [33-35] irrespective of 

the nature of items (old or new).   

The CIP algorithm has been proposed to improve the 

efficiency of mining FIs over the entire history of 

data streams when a user-specified ‘θ’ is given. For 

the efficient mining of FIs over stream landmark 

window, an efficient single-pass algorithm, called 

CIP is developed. It discovers the set of all FIs over 

data streams across the entire history. For 

constructing and mining the items a new structure 
generator is proposed and is called CIS-Tree. For 

maintaining the most FIs, a new structure called 

different traversal tree (DT*-Tree) is also proposed. 

Depending upon the ‘θ’, the infrequent items are 

removed from the DT*-Tree and placed in another 

structure called infrequent DT*-Tree, which is the 

same as DT*-Tree structure. For maintaining 

infrequent itemsets, the infrequent DT*-Tree is used. 

The proposed algorithm consists of four steps. 

1. Construct the CIS-Tree (Candidate Indexed Sub-

Tree) 
2. Mining the CIS-Tree.  

3. Mined frequent itemsets are placed in another tree 

called DT*-Tree.  

4. The infrequent itemsets are placed in infrequent 

DT*-Tree.   

The figure 1 shows the CIP mining steps to find the 

frequent itemsets from data streams using the concept 

of landmark windowing technique. 

 

 
Figure 1 CIP mining steps 

The CIS-Tree is used to mine the FIs. After mining, 

the FIs are placed in the DT*-Tree. The most FIs are 

placed at the top of the tree. To ensure the 

completeness of frequent patterns for stream data, it is 

necessary to store not only the information related to 

frequent items, but also infrequent ones. If the 

information about the currently infrequent items is 

not stored, such information would be lost. If these 

items become frequent later, it would be impossible 
to figure out their correct overall support and their 

connections with other items. However, it is 

unrealistic to hold all streaming data in the limited 

main memory. Thus, the patterns are divided into two 

categories: FIs and infrequent itemsets.  

Two DT*-Trees are used in this model. One DT*-

Tree maintains the FIs. The other DT*-Tree maintains 

the infrequent itemsets. Depending upon the value of 

‘θ’, FIs are generated. The infrequent itemsets are 

removed from the DT*-Tree and placed in infrequent 

DT*-Tree. If the infrequent itemsets exceeds some 

limits, then it is deleted from the infrequent DT*-
Tree. 

CIS-Tree Construction 

 

In the CIS-Tree construction process, there are five 

conditions. Depending upon the conditions, the tree is 

constructed. 

 

Conditions    

 

i. Read the items in the first transaction and insert 

into the center path. Increment the counter value by 1. 
ii.       Read the items in the second transaction. If the 

first item in the second transaction matches with the 

root, then follow the center path & left path and insert 

the transaction items. Increment the counter value for 

the corresponding items. 

iii.       If the first item in the second transaction 

does not match with the root, then follow the center 

path. If the first item in the second transaction 

matches with the center path, then insert the 

transaction items in the right path. Increment the 

counter value for the corresponding items. 

iv. If the first item in the transaction does not match 
with root and center path, then follow the right path. 

If the first item in the transaction matches with the 

right path, then insert the transaction items in the right 

center path. Increment the counter value for the 

corresponding items. 

v. If the first item in the transaction does not match 

with the root, center path and right path, then from the 

root, take the right path and insert the transaction 

items. Increment the counter value for the 

corresponding items. 

The following transactions can be considered. 

Table 1 Transaction table 

Transaction 

ID 

List of items 

1 I1, I2, I5 

2 I2, I4 

3 I2, I3 

4 I1, I2, I4 

5 I1, I3 
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6 I2, I3 

7 I1, I3 

8 I1, I2, I3, I5 

9 I1, I2, I3 

10 I6, I7 

11 I2, I4, I5 

12 I6, I7 

13 I4, I5 

 

In the table 1, there are thirteen transactions and 

seven different items. The minimum support count is 

2. The CIS-Tree is constructed as follows. First, the 

root of the tree is created. For example, the scan of 

the first transaction, “I1, I2, I5”, which contains three 
items, leads to the construction of the first branch of 

the tree with three nodes, <I1: 1>, <I2: 1>, <I5: 1>, 

where I1 is the root of the tree, I2 is linked to I1 and 

I5 is linked to I2. The second transaction is, “I2, I4”.  

The first item in the second transaction is different 

from the first item in the first transaction. Then search 

the center path and right path. If the item is found, 

then insert in the right direction. In the figure 2, I2 is 

found in the center path, therefore I4 is linked to I2 in 

right direction.  

The third transaction is, “I2, I3”. The item I2 is 
found; therefore I3 is linked to I2 in right direction. 

The fourth transaction is, “I1, I2, I4”. The item I1 

matches with the root and I2 matches with the second 

item, therefore increment the counter value 1 in I2, 

and I4 is linked to I2 in left direction. Similarly insert 

all the items in the tree. For transaction number ten, 

the items are “I6, I7” the first item I6. The item is 

searched with center path and right path of the tree. 

Here I6 is not found in the tree, therefore I6 is linked 

to the root in the right direction, i.e., I6 is linked to I1 

in right direction and I7 is linked to I6 in center path 

or left path.  
For transaction number thirteen, the items are “I4, 

I5”. The item I4 is searched with center path and right 

path. The item I4 is found; therefore I5 is linked to I4 

in right direction. This is shown in figure 2. 

 

Figure 2  CIS-Tree generation 

Algorithm: CIP 

Input: Transaction database; 

Min_sup- the minimum support count threshold. 

Output: The complete set of frequent items. 

 

The CIP mining steps is as follows. 
1. Scan the transaction database and construct the 

CIS-Tree by calling the procedure Insert_items 

(T,Is). 

2. The CIS-Tree is mined by calling the procedure 

CIS_tree_growth (T, min_sup) and the frequent 

itemsets are placed in DT*-Tree. 

3. The infrequent itemsets are placed in infrequent 

DT*-Tree. 

Read the items in the first transaction and insert into 

the center path. Increment the counter value by 1. 

Read the items in the next transactions and insert into 

left or center side of the tree or center or right side of 
the tree depending upon on the conditions. If the first 

item in the transaction matches with the root, then 

insert all items in the transactions in the left side of 

the tree and increment the counter value for the 

itemsets. 

Algorithm :Insert_items(Tree T, Itemset Is) 

 

if T is empty 

for each item I of itemset Is 

set item(T) = I 

setitemcount(T) = 1 
set T = Center (T) 

else if item(T) is first item I0  of  itemset Is 

Insert_left_or_center(T,Is) 

else 

Insert_center_or_right(T,Is) 

 

If the first item in the transaction matches with the 

center path of the tree, then insert all the items in the 

right path of the tree and increment counter value for 

that itemset. 

 

Insert_left_or_center(Tree T, itemset Is) 
 

while item of Center(T) is next item of  Is    

incrementitemcount of Center(T) 

set T = Center(T) 

set I = nextitem(Is) 

if Center(T) is null 

set item of Center(T) = nextitem(Is) 

else 

set item(Left(T)) = nextitem(Is) 

while (nextitem(Is) is not null) 

set item of Center(T) = nextitem(Is) 
 

 If the first item in the transaction does not match 

with root and center path, then follow the right path. 

If the first item in the transaction matches with the 

right path, then insert the transaction items in the right 

center path.  

Insert_center_or_right(Tree T, itemset Is) 

 

set found = Find_center_right(T, firstitem(Is)) 
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if found is not null 

set T = found then increment itemcount(T) 

if item of Right(T) is nextitem(Is) 

set T = Right(T) 

if Center(T) is null 
set item of Center(T) = nextitem(Is) 

set T = Center(T) 

else 

set item of Left(T) = nextitem(Is) 

set T = Left(T) 

else 

set T = Right(T) 

set item(T) = nextitem(Is) 

while (nextitem(Is) is not null) 

set T = Center (T) 

set item(T) = nextitem(Is) 

else // if not found, go to right of the root// 
set T = Right(T) 

whileitemnext(Is) is not null 

set item(T) = itemnext(Is) 

set T = Center(T) 

 

Increment the counter value for the corresponding 

items. If the first item in the transaction does not 

match with the root, center path and right path, then 

from the root, take the right path and insert the 

transaction items. Increment the counter value for the 

corresponding items. 

The CIS-Tree mining process 

In the CIS-Tree mining process, there are three 

conditions. Depending upon the conditions, the tree is 

mined. 

Conditions   

i. If the item is at the center path or at the left path, 

then consider all the branches in the left and center. 

ii. If there is an item at the right hand side and root is 

not a starting point, then find the right starting node 

on which the item starts, from that, take one right path 

and corresponding center and left path. 

iii. If the item is at the right hand side and root is the 
starting point, then skip the root node, proceed with 

right hand side and take the center and left path. 

 For the generation of frequent itemsets, first take 

item I5 from the figure 2, which is the last item in the 

tree. In the center and left side of the tree, I5 occurs 

two times. In the right side of the tree, I5 occurs two 

times.  The paths formed by these branches are {I1, 

I2, I5: 1}, {I1, I2, I3, I5: 1}, {I2, I4, I5: 1} and {I4, 

I5: 1}. The frequent itemsets are {I1, I5} = 2, {I2, I5} 

= 3, {I4, I5} = 2, {I1, I2, I5} = 2, {I1, I2} = 2, {I3, 

I5} = 1 and {I5}=4.  The itemsets that do not end 
with I5 are removed. Therefore remove the itemset 

{I1,I2}=2, because the itemset is end with item I2. 

The minimum support value taken is 2. Therefore, 

eliminate the set {I3,I5} because the count value of 

this set is 1.  

Next take the item I4, the paths for I4 are {I1, I2, I4: 

1},{I2, I4: 2} and {I4 :1}. The frequent itemsets are 
{I2, I4} = 3, {I1, I4} = 1 and {I4}=4. Eliminate {I1, 

I4} because the count value for this set is 1. Next take 

the item I3, the paths formed are {I1, I3: 2}, {I1, I2, 

I3: 2} and {I2, I3: 2}. The frequent itemsets are {I1, 

I3}= 4, {I2, I3}=4, {I1, I2, I3}=2 and {I3}=6.  Next 

take the item I2. The paths are {I1, I2: 4} and {I2: 4}. 

The frequent itemsets are {I1, I2}=4 and {I2}=8. For 

the item I1 the frequent item is {I1}=6.  

For I7, its path starts from the root. So skip the root 

and the path is {I6, I7: 2}. The frequent itemsets are 

{I6, I7}=2 and {I7}=2. For the item I6 the frequent 

item is {I6}=2. The final frequent 1-itemset are  
{I5}=4, {I4}=4, {I3}=6, {I2}=8, {I1}=6, {I6}=2 and 

{I7}=2. The final frequent 2-itemsets are {I1, I5} = 2, 

{I2, I5} = 3, {I4, I5} = 2, {I2, I4} = 3, {I1, I3}=4, 

{I2, I3}=4, {I1, I2}=4 and {I6, I7}=2. The final 3-

frequent items are {I1, I2, I3}=2 and {I1, I2, I5}=2. 

Algorithm : CIS_TREE_GROWTH(Tree T, Number 

min_sup) 

 

For each item I of itemset 

      For each item J of itemset from Inext to Ilast 

if I is the first item I1 of itemset 

count(I,J)=FindLCount(T,J,min_sup) 

else 

count(I,J)=FindRCount(T,J,min_sup) 

 

FindLCount(Tree T, Item J, Number min_sup) 

if (item(T) is J) 

if (itemcount(T) is >= min_sup) 

 count = itemcount(T) 

else count =0 

else if (Center(T) is not null) 

set count = count + FindLCount(Center(T), 

J,min_sup) 

else if  (Left(T) is not null) 

set count = count + FindLCount(Left(T),J,min_sup) 

return the value of count  

  

FindRCount(Tree T, Item I, Item J, Number min_sup) 

if item of T is I 

if item of T’s Right is J 

set count = itemcount (T) 

else if Left(T) is not null 

set T=Left(T) 

 set count = count + FindRCount(T,I,J,min_sup) 

else if  Center(T) is not null 

set T = Center(T) 
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 set count = count + FindRCount(T,I,J,min_sup) 

else if Right(T) is not null 

set T = Right(T) 

set count = count + FindRCount(T,I,J,min_sup) 

 return count 

 If the item is at the center path or at the left path, 

then consider all the branches in the left and center. 

Remove the items whose counter value is less than 

the minimum support. If the item value is greater than 

the minimum support, then take the counter value for 

those items and generate the frequent itemsets. If 

there is an item on the right hand side and root is not 

a starting point, then find the right starting node on 

which the item starts, from that, take one right path 

and corresponding center and left path. If the item is 

on the right hand side and root is the starting point, 
then skip the root node, proceed with right hand side 

and take the center and left path. Remove the items 

whose counter value is less than the minimum 

support. If the item value is greater than the minimum 

support, then take the counter value for those items 

and generate the frequent itemsets [36-37]. 

III. FISIN DT* TREE 

The pruned candidates are placed in another index 

structure, named DT*-Tree.  This tree uses the 

concept of B-Tree [38] and T*-Tree [39]. The 

advantage of using this tree is, it will maintain the 

most frequent itemsets and the results will be 

analyzed in fast manner. The DT*-Tree consists of 

two types of nodes. One is outer level node and 

another one is the inner level node. For inserting an 

item, first check with the infrequent DT*-Tree 

whether the item is already available or not. If the 
item is present in the infrequent DT*-Tree, then for 

the item, increment the count value by 1. 

If the item is not available in the infrequent DT*-

Tree then insert the item in to the DT*-Tree and 

increment the count value by 1. The item is stored in 

the outer level node along with their count value. The 

item with the same count value is placed inside the 

inner level node. The growth is from top to bottom 

and pointer links every node.  If the item is accessed 

for the second time, then the item is moved to the 

second outer level node. Now the growth is from 
bottom to top just like in B-Tree. Again when the 

same item is accessed, the item moves to the third 

outer level node. Similarly the item is moved and 

finally it takes the highest priority. So, now the root 

has the highest priority item. 

CIP uses DT*-tree index structure to filter the 

unnecessary itemsets. When the CIS-Tree mined, the 

FIs are inserted into a DT*-tree. If the count value is 

greater than any other node count value, then it 

should be moved to the next higher level. Finally the 

count value, which is greater and equal to the ‘θ’, 
should be taken. The CIP prunes all the entries whose 

support is less than the ‘θ’. After pruning, the 

frequent itemsets are placed in the DT*-Tree, which 

is used to maintain the most frequent itemsets. Figure 

3 shows the frequent itemsets that are placed in the 

DT*-Tree.                                                           

 

Figure 3: DT*-Tree for frequent itemsets 

The infrequent itemsets are placed in infrequent DT*-

Tree. This is shown in figure 4. 

 
Figure 4: Infrequent DT*-Tree 

To get the real useful FIs, the ‘θ’ should be adjusted. 

Let ‘os’ be the old support threshold, and ’F’ be the 

set of all mined FIs. When the minimum support is 

changed to os1, there are two probabilities: 

 

1. os1>os, i.e., some FIs may be not frequent. 

2. os1<os, i.e., some infrequent itemsets may become 

frequent. 

 
Set the new FIs as F1. DT*-Tree needs the first case. 

In the first case F1 will be got easily, i.e., 

                            F1= {X   F1 / X.supos1 } 

 

IV. RESULTS AND DISCUSSIONS 
All experiments were conducted in Intel® Core™2 

Duo CPU, E7500 @2.93 GHz, 1.98 GB RAM and 

250GB Hard Disk running on Windows XP. For the 

performance analysis, the datasets are taken from 

http://fimi.cs.helsinki.fi. The algorithms have been 
implemented in Java NetBeans version 6.8. The 

number of distinct items is 800; the maximum 

average number of items per transaction is 7. The 

parameter settings used in the experiments are shown 

in table 2. 

Table 2: Parameter Setting 

Parameter   Value 

N   800 

T 1,00,000 
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    2~10 

A    5~7 

 

Where   N – Number of different items 

T – Total Number of transactions 

 – Minimum Support value 

A – Average transaction length 

 

In the first experiment, the accuracy of the CIP 

algorithm is measured. Accuracy of an algorithm is 

defined as the fraction of reported frequent itemsets 
that are actually frequent. The accuracy of the 

algorithm is compared for number of transactions. 

The CIP algorithm is compared to the IDSM-MFI 

[40]. If the total number of transactions is 10,000, the 

CIP will generate the frequent itemsets with the 

accuracy of 98.7%. The IDSM-MFI generates the 

frequent itemsets with the accuracy of 97.8%. If the 

total number of transactions is 1,00,000 the CIP will 

generate the frequent itemsets with the accuracy of 

97.4%. The IDSM-MFI generates the frequent 

itemsets with the accuracy of 96.8%. This is shown in 

the figure 5. 
 

 
 

Figure 5 Accuracy of the algorithms for T 

 

In the second experiment, the run time of mining 

from the CIP is measured. The runtime of mining 

from the CIP and the IDSM-MFI are compared. 
When the number of data sets increased, the run time 

of mining from the CIP slightly increased but the 

runtime of mining the IDSM-MFI is increased higher 

than the CIP algorithm. This is shown in the figure 6. 

 

 
Figure 6 Execution time for T when A = 5 

 

The third experiment is conducted for execution time 

for number of transactions when average length of the 

transaction is 7. When the average length of the 

transactions is increased, the total number of 

transactions will be decreased. If the total number of 

transactions is decreased, the run time will also be 

decreased. This is shown in figure 7.   

 
 

 
Figure 8Execution time for T when A = 7 

 

In the fourth experiment, the effect of minimum 

support is tested. When the minimum support is 

increased, the runtime will be decreased. In the case 

of the CIP, it will maintain a constant level for the 

minimum support value of   7, 8, 9 and 10. This is 

shown in figure 8. 

 

 
 

Figure 8 Execution time with 
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The experimental results show that the CIP algorithm 

outperforms the existing IDSM-MFI. The CIP 

algorithm is an adaptive approximate algorithm for 

finding frequent itemsets over the entire history of 

data stream. The CIP is used to find the most 
frequently used itemsets in the entire history of 

database. 

 

VI CASE STUDY 
 

For illustrating the effectiveness of the CIP tree, a 

web prefetching application is described. Since the 

bandwidth of the network is limited, web page access 

with no latency is impossible. In order to solve this 
problem, researchers have come with solution called 

web prefetching. The concept is based on the history 

of access pattern. 

The most expected web page to be accessed next by 

the user is estimated by the previous history of access 

patterns. In order to achieve this, the access patterns 

are identified from the web access log. These access 

patterns are grouped and frequency of every unique 

access pattern is computed. The most frequent access 

pattern is the most expected access pattern. The 

access patterns are ordered according to their 

frequencies. Based on the current access sequence of 
the user, the most expected access pattern is identified 

from the list by matching the prefix. 

From the matched entry the next expected web page 

to be accessed is fetched from the web server and 

stored in the local machine. Now, when the user 

accesses that web page, the page will be displayed 

immediately by accessing the local file. This process 

eliminates the latency. CIP tree is the suitable data 

structure used to find the most FI. We have taken real 

data from world cup football 1998 web access 

log(http://ita.ee.lbl.gov). The summary of the access 
log is given in table 3. 

 

Table 3 World cup 1998 Web Access Log 

 

World cup 1998 Web Access Log 

From : 01/Jun/1998:22:00:01 

To : 02/Jun/1998:02:57:15 

Description Count Count 

   Total URLS   936071 

   Access Pattern(Itemset)   12929 

  Unique Itemset  10970 

Itemset with Frequency  Greater than 1      357 

 

 

The CIP tree is constructed by taking all 936071 

URLS present in the access log for the period of 4hrs 

57mins 14secs. Total of 12929 users accessed these 

URLS in different sequences called access pattern, 

among these, 10970 access patterns are unique. 357 
access patterns are having frequency greater than 1. 

The unique URLS present in the frequent itemsets are 

given in table 4, and are mapped with the symbols Ui 

as mentioned in the table 4.  

 

 Table 4: URLS present in the frequent ite> 

 

URL ID                      URL 

U1 /images/home_tool.gif 

U2 /images/home_sponsor.gif 

U3   /images/home_intro.anim.gif 

U4  /images/home_fr_phrase.gif 

U5 /images/home_fr_button.gif 

U6 /images/home_eng_phrase.gif 

U7 /images/home_eng_button.gif 

U8 /images/home_bg_stars.gif 

U9 /images/home_logo.gif 

U10 /english/playing/download/images/big.bird.gif 

 

The top 5 frequent itemsets are shown in table 5. 357 

users had accessed the web site having the same 
access pattern, this forms the most frequent itemset 

with eight items {U1,U2,U3,U4,U5,U6,U7,U8}.                         

 

Table 5: Top 5 frequent itemsets 
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access pattern, this forms the second most frequent 
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/images/home_fr_phrase.gif, 

/images/home_fr_button.gif, 

/images/home_eng_phrase.gi

f, 

/images/home_eng_button.gi

f, 
/images/home_bg_stars.gif, 
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U3 /images/home_intro.anim.gif, 85 1 

U1

0 

/english/playing/download/i

mages/big.bird.gif, 

73 1 

U8 /images/home_bg_stars.gif, 44 1 
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itemset with nine items { 

U1,U2,U9,U3,U4,U5,U6,U7,U8}. 85 users had 

accessed the web site having the same access pattern, 

this forms the third most frequent itemset with only 

one item{ U3}. 
 

V. CONCLUSION 

Mining data streams is a very demanding and 

challenging area of research. Real time data streams 

are very rapid, making the traditional methods fall 

short. Existing schemes do not use the past history, 

which might be essential at any point of time. This 

situation can be handled by the landmark data mining 

schemes. But, literature suggests that, very feeble 

amount of research has been devoted. In this article, 

we have proposed a new CIP based landmark scheme. 

It uses a user-specified ‘θ’ for the efficient single-pass 

algorithm to mine the FIs over data stream. It does 

not discard the history of the data streams, which is 

its main strength compared to other existing schemes. 

For constructing and mining the items, a new 

structure generator called ‘CIS-Tree’, is also 

proposed. This model is suitable for certain 

applications, where people need the most FIs. The 

efficacy of the proposal is compared and contrasted 

with the existing IDSM-MFI. Examination is 

performed over 1,00,000 transactions. The proposal 

could be able to achieve 97.4% accuracy, compared 

to 96.8% of the IDSM. The proposed test is also 

tested by varying values of ‘θ’ for its run time 

effectiveness. Moreover, a real time application, 

called prefetching is implemented, using the data 

collected from world cup 1998. The proposed 

approach has successfully outperformed its 

counterpart in every aspect. This opens up a new area 

of research in landmark data mining. 
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