
Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5563

CIP- Efficient Method for Mining Frequent

Itemsets from Data streams using Landmark

Window Model
F. Ramesh Dhanaseelan

Department of Computer Applications, St. Xavier’s Catholic College of Engineering, Chunkankadai - 03

Email: dhanaseelan@sxcce.edu.in

M. JeyaSutha

Department of Computer Applications, St. Xavier’s Catholic College of Engineering, Chunkankadai - 03
Email: jayasuthaus@rediffmail.com

---ABSTRACT---

Continuous stream transactions like network monitoring, retail market data analysis and stock market prediction

need the “frequent patterns” to be detected recurrently. Literature suggests that several pattern mining solutions

are being developed over years. Still lot of challenges need to be addressed due to rapidness in generation of

continuous, unbounded and ordered data real time. Hence extraction of frequent patterns from recent data will

improve the analysis of stream data. In this article, a new landmark window model CIP (candidate indexing and

pruning) is considered for mining the datasets. CIP allows us to mine over entire history of data streams, which

improves the accuracy. This article also proposes the candidate indexed sub (CIS)-tree scheme to extract the

essential information from each incoming transactions of data streams. Our proposal is compared with the

existing “improved data stream mining” (ISDM) for maximal frequent itemsets algorithm. Extensive

experimental analyses prove the superiority of the proposed CIP over the popular ISDM in terms of accuracy

and time complexity for high-speed data stream. This article also covers up a case study where the proposed

approach is applied for an application called “web prefetching”.

Keywords -Data streams, frequent itemsets, pruning, frequent patterns, web prefetching

--

Date of Submission:19, Nov 2022 Date of Acceptance: 29, Dec 2022

--

I. INTRODUCTION

The boom in hardware technology in recent years

has made the assessment of real time data

continuously. Even though it sounds advantageous, it
throws up several challenges ahead to the researchers,

as the data may grow up to infinite and unbounded

within no span of time (data stream). A lot of vital

information needs to be processed and recovered

rapidly in certain applications namely, manufacturing

flow monitoring, sensor networks, stock exchange,

and telecommunications. Data mining (DM) is a

computational process of discovering this vital

information in an understandable structure for further

decision making.

An itemset can be defined as frequent itemset (FI), if

it takes major portion of the dataset. Frequent
itemsets (FIs) is a well acknowledged problem in DM

as it is connected with many important tasks like

associations [1-3] and clusters [4]. Basic DM task

would be identifying set of items, products,

symptoms and characteristics, which often co-occur

in a huge database [5]. Recently, database and

knowledge discovery communities have focused on

new data model, where data arrive in the form of

continuous data streams. Data streams [6-9] possess

some computational characteristics, such as unknown

or unbounded length, possibly very fast arrival rate,
inability to backtrack over previously arrived data

elements (only one sequential pass over the data is

permitted), and a lack of system control over the

order in which the data arrive. Hence, it will be

impossible to analyze by capturing the important

patterns and exceptions. Data stream is classified into

offline streams and online streams. Offline streams

are characterized by regular bulk arrivals. Online

streams are characterized by real-time [10-11]
updated data that come one by one in time. As the

number of applications on mining data streams grows

rapidly, there is an increasing need to perform

association rule mining [12-13] on stream data.

There are three data stream processing models,

namely landmark, sliding Windows and tilted/damped

Windows. The landmark model mines all FIs over the

entire history of data stream from a specific time

point called landmark to present [14-15]. The sliding

window model finds and maintains FIs in sliding

windows. Only part of the data streams within the
sliding window [16-20] is stored and processed at the

time when the data flow in. The tilted/damped model

mines FIs in data stream in which each transaction

[21-24] has a weight and this weight decreases with

age. Older transactions contribute less weight towards

itemset frequencies [14], [25-29]. Each of these

models has its own merits and demerits. However,

recent literature suggests that relatively less

contribution made in landmark data streaming.

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5564

Hence, we have decided to put effort in materializing

a strong idea in landmark data streaming.

II. CANDIDATE INDEXING AND

PRUNING

The proposed candidate indexing and pruning

technique is devised to find the FIs from stream

landmark window. This model is used to mine the

most FIs [30-32] over the entire history of data
streams. The frequent patterns are measured from the

start of the stream upto the current moment. Our

proposal mines the most FIs [33-35] irrespective of

the nature of items (old or new).

The CIP algorithm has been proposed to improve the

efficiency of mining FIs over the entire history of

data streams when a user-specified ‘θ’ is given. For

the efficient mining of FIs over stream landmark

window, an efficient single-pass algorithm, called

CIP is developed. It discovers the set of all FIs over

data streams across the entire history. For

constructing and mining the items a new structure
generator is proposed and is called CIS-Tree. For

maintaining the most FIs, a new structure called

different traversal tree (DT*-Tree) is also proposed.

Depending upon the ‘θ’, the infrequent items are

removed from the DT*-Tree and placed in another

structure called infrequent DT*-Tree, which is the

same as DT*-Tree structure. For maintaining

infrequent itemsets, the infrequent DT*-Tree is used.

The proposed algorithm consists of four steps.

1. Construct the CIS-Tree (Candidate Indexed Sub-

Tree)
2. Mining the CIS-Tree.

3. Mined frequent itemsets are placed in another tree

called DT*-Tree.

4. The infrequent itemsets are placed in infrequent

DT*-Tree.

The figure 1 shows the CIP mining steps to find the

frequent itemsets from data streams using the concept

of landmark windowing technique.

Figure 1 CIP mining steps

The CIS-Tree is used to mine the FIs. After mining,

the FIs are placed in the DT*-Tree. The most FIs are

placed at the top of the tree. To ensure the

completeness of frequent patterns for stream data, it is

necessary to store not only the information related to

frequent items, but also infrequent ones. If the

information about the currently infrequent items is

not stored, such information would be lost. If these

items become frequent later, it would be impossible
to figure out their correct overall support and their

connections with other items. However, it is

unrealistic to hold all streaming data in the limited

main memory. Thus, the patterns are divided into two

categories: FIs and infrequent itemsets.

Two DT*-Trees are used in this model. One DT*-

Tree maintains the FIs. The other DT*-Tree maintains

the infrequent itemsets. Depending upon the value of

‘θ’, FIs are generated. The infrequent itemsets are

removed from the DT*-Tree and placed in infrequent

DT*-Tree. If the infrequent itemsets exceeds some

limits, then it is deleted from the infrequent DT*-
Tree.

CIS-Tree Construction

In the CIS-Tree construction process, there are five

conditions. Depending upon the conditions, the tree is

constructed.

Conditions

i. Read the items in the first transaction and insert

into the center path. Increment the counter value by 1.
ii. Read the items in the second transaction. If the

first item in the second transaction matches with the

root, then follow the center path & left path and insert

the transaction items. Increment the counter value for

the corresponding items.

iii. If the first item in the second transaction

does not match with the root, then follow the center

path. If the first item in the second transaction

matches with the center path, then insert the

transaction items in the right path. Increment the

counter value for the corresponding items.

iv. If the first item in the transaction does not match
with root and center path, then follow the right path.

If the first item in the transaction matches with the

right path, then insert the transaction items in the right

center path. Increment the counter value for the

corresponding items.

v. If the first item in the transaction does not match

with the root, center path and right path, then from the

root, take the right path and insert the transaction

items. Increment the counter value for the

corresponding items.

The following transactions can be considered.

Table 1 Transaction table

Transaction

ID

List of items

1 I1, I2, I5

2 I2, I4

3 I2, I3

4 I1, I2, I4

5 I1, I3

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5565

6 I2, I3

7 I1, I3

8 I1, I2, I3, I5

9 I1, I2, I3

10 I6, I7

11 I2, I4, I5

12 I6, I7

13 I4, I5

In the table 1, there are thirteen transactions and

seven different items. The minimum support count is

2. The CIS-Tree is constructed as follows. First, the

root of the tree is created. For example, the scan of

the first transaction, “I1, I2, I5”, which contains three
items, leads to the construction of the first branch of

the tree with three nodes, <I1: 1>, <I2: 1>, <I5: 1>,

where I1 is the root of the tree, I2 is linked to I1 and

I5 is linked to I2. The second transaction is, “I2, I4”.

The first item in the second transaction is different

from the first item in the first transaction. Then search

the center path and right path. If the item is found,

then insert in the right direction. In the figure 2, I2 is

found in the center path, therefore I4 is linked to I2 in

right direction.

The third transaction is, “I2, I3”. The item I2 is
found; therefore I3 is linked to I2 in right direction.

The fourth transaction is, “I1, I2, I4”. The item I1

matches with the root and I2 matches with the second

item, therefore increment the counter value 1 in I2,

and I4 is linked to I2 in left direction. Similarly insert

all the items in the tree. For transaction number ten,

the items are “I6, I7” the first item I6. The item is

searched with center path and right path of the tree.

Here I6 is not found in the tree, therefore I6 is linked

to the root in the right direction, i.e., I6 is linked to I1

in right direction and I7 is linked to I6 in center path

or left path.
For transaction number thirteen, the items are “I4,

I5”. The item I4 is searched with center path and right

path. The item I4 is found; therefore I5 is linked to I4

in right direction. This is shown in figure 2.

Figure 2 CIS-Tree generation

Algorithm: CIP

Input: Transaction database;

Min_sup- the minimum support count threshold.

Output: The complete set of frequent items.

The CIP mining steps is as follows.
1. Scan the transaction database and construct the

CIS-Tree by calling the procedure Insert_items

(T,Is).

2. The CIS-Tree is mined by calling the procedure

CIS_tree_growth (T, min_sup) and the frequent

itemsets are placed in DT*-Tree.

3. The infrequent itemsets are placed in infrequent

DT*-Tree.

Read the items in the first transaction and insert into

the center path. Increment the counter value by 1.

Read the items in the next transactions and insert into

left or center side of the tree or center or right side of
the tree depending upon on the conditions. If the first

item in the transaction matches with the root, then

insert all items in the transactions in the left side of

the tree and increment the counter value for the

itemsets.

Algorithm :Insert_items(Tree T, Itemset Is)

if T is empty

for each item I of itemset Is

set item(T) = I

setitemcount(T) = 1
set T = Center (T)

else if item(T) is first item I0 of itemset Is

Insert_left_or_center(T,Is)

else

Insert_center_or_right(T,Is)

If the first item in the transaction matches with the

center path of the tree, then insert all the items in the

right path of the tree and increment counter value for

that itemset.

Insert_left_or_center(Tree T, itemset Is)

while item of Center(T) is next item of Is

incrementitemcount of Center(T)

set T = Center(T)

set I = nextitem(Is)

if Center(T) is null

set item of Center(T) = nextitem(Is)

else

set item(Left(T)) = nextitem(Is)

while (nextitem(Is) is not null)

set item of Center(T) = nextitem(Is)

 If the first item in the transaction does not match

with root and center path, then follow the right path.

If the first item in the transaction matches with the

right path, then insert the transaction items in the right

center path.

Insert_center_or_right(Tree T, itemset Is)

set found = Find_center_right(T, firstitem(Is))

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5566

if found is not null

set T = found then increment itemcount(T)

if item of Right(T) is nextitem(Is)

set T = Right(T)

if Center(T) is null
set item of Center(T) = nextitem(Is)

set T = Center(T)

else

set item of Left(T) = nextitem(Is)

set T = Left(T)

else

set T = Right(T)

set item(T) = nextitem(Is)

while (nextitem(Is) is not null)

set T = Center (T)

set item(T) = nextitem(Is)

else // if not found, go to right of the root//
set T = Right(T)

whileitemnext(Is) is not null

set item(T) = itemnext(Is)

set T = Center(T)

Increment the counter value for the corresponding

items. If the first item in the transaction does not

match with the root, center path and right path, then

from the root, take the right path and insert the

transaction items. Increment the counter value for the

corresponding items.

The CIS-Tree mining process

In the CIS-Tree mining process, there are three

conditions. Depending upon the conditions, the tree is

mined.

Conditions

i. If the item is at the center path or at the left path,

then consider all the branches in the left and center.

ii. If there is an item at the right hand side and root is

not a starting point, then find the right starting node

on which the item starts, from that, take one right path

and corresponding center and left path.

iii. If the item is at the right hand side and root is the
starting point, then skip the root node, proceed with

right hand side and take the center and left path.

 For the generation of frequent itemsets, first take

item I5 from the figure 2, which is the last item in the

tree. In the center and left side of the tree, I5 occurs

two times. In the right side of the tree, I5 occurs two

times. The paths formed by these branches are {I1,

I2, I5: 1}, {I1, I2, I3, I5: 1}, {I2, I4, I5: 1} and {I4,

I5: 1}. The frequent itemsets are {I1, I5} = 2, {I2, I5}

= 3, {I4, I5} = 2, {I1, I2, I5} = 2, {I1, I2} = 2, {I3,

I5} = 1 and {I5}=4. The itemsets that do not end
with I5 are removed. Therefore remove the itemset

{I1,I2}=2, because the itemset is end with item I2.

The minimum support value taken is 2. Therefore,

eliminate the set {I3,I5} because the count value of

this set is 1.

Next take the item I4, the paths for I4 are {I1, I2, I4:

1},{I2, I4: 2} and {I4 :1}. The frequent itemsets are
{I2, I4} = 3, {I1, I4} = 1 and {I4}=4. Eliminate {I1,

I4} because the count value for this set is 1. Next take

the item I3, the paths formed are {I1, I3: 2}, {I1, I2,

I3: 2} and {I2, I3: 2}. The frequent itemsets are {I1,

I3}= 4, {I2, I3}=4, {I1, I2, I3}=2 and {I3}=6. Next

take the item I2. The paths are {I1, I2: 4} and {I2: 4}.

The frequent itemsets are {I1, I2}=4 and {I2}=8. For

the item I1 the frequent item is {I1}=6.

For I7, its path starts from the root. So skip the root

and the path is {I6, I7: 2}. The frequent itemsets are

{I6, I7}=2 and {I7}=2. For the item I6 the frequent

item is {I6}=2. The final frequent 1-itemset are
{I5}=4, {I4}=4, {I3}=6, {I2}=8, {I1}=6, {I6}=2 and

{I7}=2. The final frequent 2-itemsets are {I1, I5} = 2,

{I2, I5} = 3, {I4, I5} = 2, {I2, I4} = 3, {I1, I3}=4,

{I2, I3}=4, {I1, I2}=4 and {I6, I7}=2. The final 3-

frequent items are {I1, I2, I3}=2 and {I1, I2, I5}=2.

Algorithm : CIS_TREE_GROWTH(Tree T, Number

min_sup)

For each item I of itemset

 For each item J of itemset from Inext to Ilast

if I is the first item I1 of itemset

count(I,J)=FindLCount(T,J,min_sup)

else

count(I,J)=FindRCount(T,J,min_sup)

FindLCount(Tree T, Item J, Number min_sup)

if (item(T) is J)

if (itemcount(T) is >= min_sup)

 count = itemcount(T)

else count =0

else if (Center(T) is not null)

set count = count + FindLCount(Center(T),

J,min_sup)

else if (Left(T) is not null)

set count = count + FindLCount(Left(T),J,min_sup)

return the value of count

FindRCount(Tree T, Item I, Item J, Number min_sup)

if item of T is I

if item of T’s Right is J

set count = itemcount (T)

else if Left(T) is not null

set T=Left(T)

 set count = count + FindRCount(T,I,J,min_sup)

else if Center(T) is not null

set T = Center(T)

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5567

 set count = count + FindRCount(T,I,J,min_sup)

else if Right(T) is not null

set T = Right(T)

set count = count + FindRCount(T,I,J,min_sup)

 return count

 If the item is at the center path or at the left path,

then consider all the branches in the left and center.

Remove the items whose counter value is less than

the minimum support. If the item value is greater than

the minimum support, then take the counter value for

those items and generate the frequent itemsets. If

there is an item on the right hand side and root is not

a starting point, then find the right starting node on

which the item starts, from that, take one right path

and corresponding center and left path. If the item is

on the right hand side and root is the starting point,
then skip the root node, proceed with right hand side

and take the center and left path. Remove the items

whose counter value is less than the minimum

support. If the item value is greater than the minimum

support, then take the counter value for those items

and generate the frequent itemsets [36-37].

III. FISIN DT* TREE

The pruned candidates are placed in another index

structure, named DT*-Tree. This tree uses the

concept of B-Tree [38] and T*-Tree [39]. The

advantage of using this tree is, it will maintain the

most frequent itemsets and the results will be

analyzed in fast manner. The DT*-Tree consists of

two types of nodes. One is outer level node and

another one is the inner level node. For inserting an

item, first check with the infrequent DT*-Tree

whether the item is already available or not. If the
item is present in the infrequent DT*-Tree, then for

the item, increment the count value by 1.

If the item is not available in the infrequent DT*-

Tree then insert the item in to the DT*-Tree and

increment the count value by 1. The item is stored in

the outer level node along with their count value. The

item with the same count value is placed inside the

inner level node. The growth is from top to bottom

and pointer links every node. If the item is accessed

for the second time, then the item is moved to the

second outer level node. Now the growth is from
bottom to top just like in B-Tree. Again when the

same item is accessed, the item moves to the third

outer level node. Similarly the item is moved and

finally it takes the highest priority. So, now the root

has the highest priority item.

CIP uses DT*-tree index structure to filter the

unnecessary itemsets. When the CIS-Tree mined, the

FIs are inserted into a DT*-tree. If the count value is

greater than any other node count value, then it

should be moved to the next higher level. Finally the

count value, which is greater and equal to the ‘θ’,
should be taken. The CIP prunes all the entries whose

support is less than the ‘θ’. After pruning, the

frequent itemsets are placed in the DT*-Tree, which

is used to maintain the most frequent itemsets. Figure

3 shows the frequent itemsets that are placed in the

DT*-Tree.

Figure 3: DT*-Tree for frequent itemsets

The infrequent itemsets are placed in infrequent DT*-

Tree. This is shown in figure 4.

Figure 4: Infrequent DT*-Tree

To get the real useful FIs, the ‘θ’ should be adjusted.

Let ‘os’ be the old support threshold, and ’F’ be the

set of all mined FIs. When the minimum support is

changed to os1, there are two probabilities:

1. os1>os, i.e., some FIs may be not frequent.

2. os1<os, i.e., some infrequent itemsets may become

frequent.

Set the new FIs as F1. DT*-Tree needs the first case.

In the first case F1 will be got easily, i.e.,

 F1= {X  F1 / X.supos1 }

IV. RESULTS AND DISCUSSIONS
All experiments were conducted in Intel® Core™2

Duo CPU, E7500 @2.93 GHz, 1.98 GB RAM and

250GB Hard Disk running on Windows XP. For the

performance analysis, the datasets are taken from

http://fimi.cs.helsinki.fi. The algorithms have been
implemented in Java NetBeans version 6.8. The

number of distinct items is 800; the maximum

average number of items per transaction is 7. The

parameter settings used in the experiments are shown

in table 2.

Table 2: Parameter Setting

Parameter Value

N 800

T 1,00,000

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5568

 2~10

A 5~7

Where N – Number of different items

T – Total Number of transactions

 – Minimum Support value

A – Average transaction length

In the first experiment, the accuracy of the CIP

algorithm is measured. Accuracy of an algorithm is

defined as the fraction of reported frequent itemsets
that are actually frequent. The accuracy of the

algorithm is compared for number of transactions.

The CIP algorithm is compared to the IDSM-MFI

[40]. If the total number of transactions is 10,000, the

CIP will generate the frequent itemsets with the

accuracy of 98.7%. The IDSM-MFI generates the

frequent itemsets with the accuracy of 97.8%. If the

total number of transactions is 1,00,000 the CIP will

generate the frequent itemsets with the accuracy of

97.4%. The IDSM-MFI generates the frequent

itemsets with the accuracy of 96.8%. This is shown in

the figure 5.

Figure 5 Accuracy of the algorithms for T

In the second experiment, the run time of mining

from the CIP is measured. The runtime of mining

from the CIP and the IDSM-MFI are compared.
When the number of data sets increased, the run time

of mining from the CIP slightly increased but the

runtime of mining the IDSM-MFI is increased higher

than the CIP algorithm. This is shown in the figure 6.

Figure 6 Execution time for T when A = 5

The third experiment is conducted for execution time

for number of transactions when average length of the

transaction is 7. When the average length of the

transactions is increased, the total number of

transactions will be decreased. If the total number of

transactions is decreased, the run time will also be

decreased. This is shown in figure 7.

Figure 8Execution time for T when A = 7

In the fourth experiment, the effect of minimum

support is tested. When the minimum support is

increased, the runtime will be decreased. In the case

of the CIP, it will maintain a constant level for the

minimum support value of 7, 8, 9 and 10. This is

shown in figure 8.

Figure 8 Execution time with

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5569

The experimental results show that the CIP algorithm

outperforms the existing IDSM-MFI. The CIP

algorithm is an adaptive approximate algorithm for

finding frequent itemsets over the entire history of

data stream. The CIP is used to find the most
frequently used itemsets in the entire history of

database.

VI CASE STUDY

For illustrating the effectiveness of the CIP tree, a

web prefetching application is described. Since the

bandwidth of the network is limited, web page access

with no latency is impossible. In order to solve this
problem, researchers have come with solution called

web prefetching. The concept is based on the history

of access pattern.

The most expected web page to be accessed next by

the user is estimated by the previous history of access

patterns. In order to achieve this, the access patterns

are identified from the web access log. These access

patterns are grouped and frequency of every unique

access pattern is computed. The most frequent access

pattern is the most expected access pattern. The

access patterns are ordered according to their

frequencies. Based on the current access sequence of
the user, the most expected access pattern is identified

from the list by matching the prefix.

From the matched entry the next expected web page

to be accessed is fetched from the web server and

stored in the local machine. Now, when the user

accesses that web page, the page will be displayed

immediately by accessing the local file. This process

eliminates the latency. CIP tree is the suitable data

structure used to find the most FI. We have taken real

data from world cup football 1998 web access

log(http://ita.ee.lbl.gov). The summary of the access
log is given in table 3.

Table 3 World cup 1998 Web Access Log

World cup 1998 Web Access Log

From : 01/Jun/1998:22:00:01

To : 02/Jun/1998:02:57:15

Description Count Count

 Total URLS 936071

 Access Pattern(Itemset) 12929

 Unique Itemset 10970

Itemset with Frequency Greater than 1 357

The CIP tree is constructed by taking all 936071

URLS present in the access log for the period of 4hrs

57mins 14secs. Total of 12929 users accessed these

URLS in different sequences called access pattern,

among these, 10970 access patterns are unique. 357
access patterns are having frequency greater than 1.

The unique URLS present in the frequent itemsets are

given in table 4, and are mapped with the symbols Ui

as mentioned in the table 4.

 Table 4: URLS present in the frequent ite>

URL ID URL

U1 /images/home_tool.gif

U2 /images/home_sponsor.gif

U3 /images/home_intro.anim.gif

U4 /images/home_fr_phrase.gif

U5 /images/home_fr_button.gif

U6 /images/home_eng_phrase.gif

U7 /images/home_eng_button.gif

U8 /images/home_bg_stars.gif

U9 /images/home_logo.gif

U10 /english/playing/download/images/big.bird.gif

The top 5 frequent itemsets are shown in table 5. 357

users had accessed the web site having the same
access pattern, this forms the most frequent itemset

with eight items {U1,U2,U3,U4,U5,U6,U7,U8}.

Table 5: Top 5 frequent itemsets

278 users had accessed the web site having the same
access pattern, this forms the second most frequent

UR

L

Access Pattern Freque

ncy

Num

ber

of

URLs

U1

U2

U3

U4

U5

U6

U7
U8

/images/home_tool.gif,

/images/home_sponsor.gif,

/images/home_intro.anim.gif,

/images/home_fr_phrase.gif,

/images/home_fr_button.gif,

/images/home_eng_phrase.gi

f,
/images/home_eng_button.gi

f, /images/home_bg_stars.gif,

357

8

U1

U2

U9

U3

U4

U5

U6

U7

U8

/images/home_tool.gif,

/images/home_sponsor.gif,

/images/home_logo.gif,

/images/home_intro.anim.gif,

/images/home_fr_phrase.gif,

/images/home_fr_button.gif,

/images/home_eng_phrase.gi

f,

/images/home_eng_button.gi

f,
/images/home_bg_stars.gif,

278

9

U3 /images/home_intro.anim.gif, 85 1

U1

0

/english/playing/download/i

mages/big.bird.gif,

73 1

U8 /images/home_bg_stars.gif, 44 1

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5570

itemset with nine items {

U1,U2,U9,U3,U4,U5,U6,U7,U8}. 85 users had

accessed the web site having the same access pattern,

this forms the third most frequent itemset with only

one item{ U3}.

V. CONCLUSION

Mining data streams is a very demanding and

challenging area of research. Real time data streams

are very rapid, making the traditional methods fall

short. Existing schemes do not use the past history,

which might be essential at any point of time. This

situation can be handled by the landmark data mining

schemes. But, literature suggests that, very feeble

amount of research has been devoted. In this article,

we have proposed a new CIP based landmark scheme.

It uses a user-specified ‘θ’ for the efficient single-pass

algorithm to mine the FIs over data stream. It does

not discard the history of the data streams, which is

its main strength compared to other existing schemes.

For constructing and mining the items, a new

structure generator called ‘CIS-Tree’, is also

proposed. This model is suitable for certain

applications, where people need the most FIs. The

efficacy of the proposal is compared and contrasted

with the existing IDSM-MFI. Examination is

performed over 1,00,000 transactions. The proposal

could be able to achieve 97.4% accuracy, compared

to 96.8% of the IDSM. The proposed test is also

tested by varying values of ‘θ’ for its run time

effectiveness. Moreover, a real time application,

called prefetching is implemented, using the data

collected from world cup 1998. The proposed

approach has successfully outperformed its

counterpart in every aspect. This opens up a new area

of research in landmark data mining.

REFERENCES

[1] Agrawal R, Srikant R (1994) Fast Algorithms for

Mining Association Rules. In Proc. of VLDB, pp

487- 499

[2] Agrawal R, Srikant R (1995) Mining Sequential

Patterns. In Proc. of IDCE, pp 3-14

[3] Liu B, Hsu W, Ma.Y (1998) Integrating

Classification and Association Rule Mining. In

Proc. of KDD

[4] Wang H, Yang J, Wang W, Yu PS (2002)
Clustering by Pattern Similarity in Large

Datasets. In Proc. of SIGMOD, pp 394-405

[5] Vimal Kumar D, Tamilarasi A (2013) An

effective approach to mine relational patterns and

its extensive analysis on multi-relational

databases Int. J. of Data Mining, Modelling and

Management, Vol.5, No.3, pp.277 - 297

[6] Babcock B, Babu S, Datar M, Motwani R, Widom

J (2002) Models and issues in data stream

systems. Proceedings of PODS, pp 1-16

[7] Graham Cormode, Muthukrishnan S (2005)

What’s Hot and What’s Not: Tracking Most

Frequent Items Dynamically. ACM Transactions

on Database Systems 30:249-278

[8] Golab L, Ozsu MT (2003) Issues in data stream
management. SIGMOD 32: 5-14

[9] Jun Tan, Yingyong BU and Haiming Zhao (2010)

Efficient Single-pass Frequent Itemsets Mining

over Data Streams. Seventh IEEE International

Conference on Fuzzy Systems and Knowledge

Discovery, pp 1438-1431

[10] Chang, Lee, Zhou (2003) Finding Recent

Frequent Itemsets Adaptively over online Data

Streams. ACM SIGKDD International

Conference on knowledge Discovery and Data

Mining, pp 487-492

[11] Lukasz Golab, Theodore Johnson, and
VladislavShkapenyuk (2012) Scalable

Scheduling of Update in Streaming Data

Warehouses. IEEE Transactions on Knowledge

and Data Engineering 24:1095-1105

[12] Nan Jiang, Le Gruenwald (2006) Research issues

in Data Stream Association Rule Mining.

SIGMOID Record, 35:1

[13] Sotiris Kotsiantis, DimitrisKanellopoulos (2006)

Association Rules Mining: A Recent Overview.

GESTS International Transactions on Computer

Science and Engineering, 32: 91-82
[14] Li H, Lee S, Shan M(2004) An Efficient

Algorithm for Mining Frequent Itemsets over

Entire History of Data Streams. In Proc. of First

International Workshop on Knowledge

Discovery in Data Streams

[15] Wang J, Han J, Pei J (2003) CLOSET+:

Searching for the Best Strategies for Mining

Frequent Closed Itemsets. In Proc. of KDD, pp

236-245

[16] Chang, Lee (2005) A sliding window method for

finding recently frequent itemsets over online

data streams. Journal of Information Science and
Engineering pp 76-90

[17] Chi Y, Wang H, Yu PS, Muntz RR (2004)

Moment: Maintaining Closed Frequent Itemsets

over a Stream Sliding Window. In Proc. of

ICDM, pp 59-66

[18] Chih-hsiang Lin, Ding-ying Chiu, Yi-hung Wu

(2005) Mining frequent itemsets from data

streams with a time sensitive sliding window.

SIAM International Conference on Data Mining,

pp 486- 491

[19] Dawar S, Sharma V, Goyal V, (2017) Mining
top-k high-utility itemsets from a data stream

under sliding window model, Applied

Intelligence, 47(4), pp 1240–1255

[20] Chang Y-I, Li C-E, Chou T-J, Yen C-Y (2018) A

weight-order-based lattice algorithm for mining

maximal weighted frequent patterns over a data

stream sliding window, 2018 IEEE International

Conference on Applied System Invention

(ICASI), Chiba, Japan, 13-17 April 2018

Int. J. Advanced Networking and Applications

Volume: 14 Issue: 04 Pages: 5563-5571 (2023) ISSN: 0975-0290

5571

[21] Kuen-Fang Jea, Chao-Wei Li, Tsui-ping Chang

(2008) An efficient approximate approach to

mining frequent itemsets over high speed

transactional data streams. IEEE Eight

International Conference on Intelligent Systems
Design and Applications, pp 275-280

[22] Bo Li (2009) Finding Frequent Itemsets from

Uncertain Transaction Streams. IEEE

International Conference on Artificial

Intelligence and Computational Intelligence, pp

331-335

[23] Li, A., Xu, W., Liu, Z. et al(2021). Improved

incremental local outlier detection for data

streams based on the landmark window model.

KnowlInfSyst 63, 2129–2155.

[24] Kolomvatsos K and Anagnostopoulos C (2021),

"Landmark based Outliers Detection in Pervasive
Applications," 2021 12th International

Conference on Information and Communication

Systems (ICICS), 2021, pp. 201-206.

 [25] Lee D, Lee W(2005) Finding Maximal

Frequent Itemsets over Online Data Streams

Adaptively. In Proc. of ICDM, pp 1550-1505

 [26] Chang JH, Lee WS (2003) estWin: Adaptively

Monitoring the Recent Change of Frequent

Itemsets over Online Data Streams. In Proc. of

CIKM, pp 536-539

[27] Chernoff H (1952) A Measure of Asymptotic
Efficiency for Tests of a Hypothesis Based on the

Sum of Observations. The Annals of

Mathematical Statistics 23:493-507

[28] Yu J, Chong Z, Lu H, Zhou A (2004) False

Positive or False Negative: Mining Frequent

Itemsets from High Speed Transactional Data

Streams. In Proc. of VLDB, pp 204-215

[29] Chang JH, Lee WS (2003) Finding Recent

Frequent Itemsets Adaptively over online Data

Streams. In Proc. of KDD, pp 753-762

[30] Giannella C, Han J, Pei J, Yan X, Yu PS (2003)

Mining Frequent Patterns in Data Streams at
Multiple Time Granularities. H. Kargupta, A.

Joshi, K. Sivakumar, and Y. Yesha (eds.) Next

Generation Data Mining

 [31] Chen Y, Dong G, Han J, Wah B.W, Wang J

(2002) Multidimensional Regression Analysis of

Time- Series Data Streams. In Proc. of VLDB,

pp 323-334

[32] Gouda K, Zaki M (2001) Efficiently Mining

Maximal Frequent Itemsets. In Proc. of ICDM

[33] ToonCalders, NeleDexters, Bart Goethals (2008)

Mining Frequent Itemsets in a Stream. Seventh
IEEE International Conference on Data Mining,

pp 83-92

[34] RenJiadong, He Huiling, XuLina, Hu Changzhen

(2009) DSMFI-Miner : An Algorithm for

Mining Maximal Frequent Itemsets on Data

Streams. IEEE Second International Workshop

on Computer Science and Engineering, pp 139-

143

[35] Alfredo Cuzzocrea, Fan Jiang, Wookey Lee,

Carson K.Leung (2014) Efficient frequent

Itemset Mining from Dense Data Streams.

APWeb, Springer, (LNCS 8709), pp 593-601

[36] Luigi Troiano, G. Scibelli (2013) A time-
efficient breadth-first level-wise lattice-traversal

algorithm to discover rare itemsets. Data Min.

Knowl. Disc., Springer 27:1-35

[37] Luigi Troiano, GiacomoScibelli (2014) Mining

frequent itemsets in data streams within a time

horizon. Data & Knowledge Engineering,

Elsevier, 89:21-37

[38] Hongjun Lu, YuetYeung Ng, ZenpingTian

(2000) T-Tree or B-tree: main memory database

index structure revisited. 11th IEEE Australasian

database conference, pp 65-73

[39] Kong Rim Choi, Kyung-Chang Kim (1996) T*-
tree: a main memory database index structure for

real time applications. IEEE workshop on real

time computing systems and applications, 81-88

[40] Yinmin Mao, Hong Li, Lumin Yang, Zhigang

Chen, Lixin Liu (2009) A Mining Maximal

FrequentItemsets over the Entire History of Data

Streams. Proceeding of the First IEEE

International Workshop on Database Technology

and Applications, pp 413-419

Biographies and Photographs

F.RameshDhanaseelan received Master
degree in Computer Science from

Bharathidasan University in 1992,

M.Tech in CSE from Pondicherry

University in 1998 and Ph.D in CSE

from Alagappa University in 2009. He

is in teaching profession for the past 27

Years. Currently, he is working as

Professor in St. Xavier’s Catholic

College of Engineering, Tamil Nadu,

India. His areas of interest are Big Data

and Machine Learning.

M Jeyasutha received Master degree in

Computer Applications from Mother

Teresa Women‟s University,

Kodaikanal, India in 2003. She obtained

M.Phil. degree in Computer Science

from Madurai Kamaraj University, India

in 2005 and PhD degree in Computer

Science from Bharathiyar University,

Coimbatore, India in 2018. She is in

teaching profession since 2004.

Currently, she is working as an
Assistant Professor in St. Xavier’s

Catholic College of Engineering, Tamil

Nadu, India. Her current research

interest includes Stream mining, Bigdata

mining and Machine learning. She is a

member of IET.

	I. INTRODUCTION
	II. CANDIDATE INDEXING AND PRUNING
	III. FIsIN DT* TREE
	IV. RESULTS AND DISCUSSIONS
	V. Conclusion
	References

