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-------------------------------------------------------------------ABSTRACT---------------------------------------------------------------  

The Distributed Diffusion Kalman Filter (DDKF) algorithm has earned great attention lately and shows an 

elaborate way to address the issue of distributed optimization over networks. Estimation and tracking of a single 

state vector collectively by nodes have been the point of focus. However, there are several multi-task-oriented 

issues where the optimal state vector for each node may not be the same. This work considers sensor networks for 

distributed multi-task tracking in which individual nodes communicate with their immediate nodes. A diffusion-

based distributed multi-task tracking algorithm is developed. This is done by implementing an unsupervised 

adaptive clustering process, which aids nodes in forming clusters and collaborating on tasks. This gave rise to an 

effective level of cooperation for improving state vector estimation accuracy, especially in cases where a cluster's 

background experience is unknown. To demonstrate the efficiency of our algorithm, computer simulations were 

conducted. Comparison has been carried out for the Diffusion Kalman Filtermulti-task with respect to the Adapt-

Then-Combine (ATC) diffusion schemes utilizing both static and adaptive combination weights. Results showed 

that the ATC diffusion schemes algorithm has great performance with the adaptive combiners as compared to 

static combiners. 
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1. INTRODUCTION 

Distributed target tracking in Wireless Sensor 

Networks(WSNs) remains a valuable task for various 
applications where a central unit is not functional. A 
primary goal to fix the main problems in sensor networks 
focuses on distributed target tracking, to deliver a real-
time and accurate estimation of the target's locomotion 
statistics, such as location, velocity, and acceleration, on 
each sensor node based on not only the sensor's local 
measurement but incorporating shared knowledge from 
immediate nodes within its range of communication. 
Across the last decade, the subject of distributed target 
tracking through sensor networks has gotten a lot of 
attention [1], [2]. Distributed processing significantly 
reduces the compute load borne via the fusion center in a 
centralized way. Additionally, placing a vast number of 
sensor nodes across the surveillance zone provides 
superfluity in a distributed sensor network, making the 
overall system more resilient to sensor failures.  

 Distributed target tracking means that the different 
network nodes can collectively perform a distributed 
estimation in an area from their measurements. Different 
solutions (strategies) for solving distributed problems have 
been researched. 

However, the diffusion-based strategies show better 
performance against other strategies among the available 
approaches, e.g., Incremental strategies [3], [4] 
(concerning connection robustness and hardware failures) 
and consensus methods [5], [6], [7] concentrating on a 
specific time range (in relations to permanence, 
convergence frequency, and steady-state performance). 
Recently, adaptive diffusion strategies have become the 
most adopted as they proffer robust solutions in 
distributive implementation. Initially, diffusion methods 
have been employed to overcome the challenges of 
distributed learning and adaptation [8]. They have 
illustrated several patterns of distributed estimating issues 
over networks.  In [9], a distributed event-triggered 
estimation through a sensor network has been proposed, an 
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energy-aware facet of distributed estimation was looked at 
and which is very effective at reducing unwarranted sensor 
samplings/transmissions, and, as a result also reduces the 
consumption of resource similarly to sensor power and 
network transmission capacity. 

In [10], the Distributed Kalman Filter (DKF) was 
developed for linear dynamic state-space models. For 
sequential estimation over time, several other diffusion 
algorithms have been investigated [11], [12], [13]. For 
example, in [11], a diffusion-based approach aimed at the 
distributed estimate of Markov jump systems and tracking 
moving targets were presented, and it was used to solve a 
single-target tracking issue. The performance of the 
diffusion methods has been investigated in various 
scenarios [14]. An estimate-based DKF [15] was proposed 
and used to solve the issue of target tracking in that it 
relies on estimate exchange in each neighborhood. Four 
steps are utilized in this algorithm ranging from an 
individual update, local update, diffusion update, and time 
update for effective tracking. The authors of [16] present a 
Finite-Time Distributed Kalman Filter(FT-DKF) for 
calculating the total of universal measurement information 
in definite contact cycles utilizing information about 
measurements being diffused. 
The work discussed in [10] was the initial work to suggest 
a diffusion-based distributed estimation fusion filter. The 
choice of convex combination coefficients affects the 
efficiency of diffusion-based algorithms. As a result, the 
authors discuss the best convex combination coefficients 
to frame a confined optimization issue in [17]. The Cost-
Effective Diffusion Kalman Filter (CE-DKF) is proposed 
in [18], which improves efficiency by diffusing the 
message about state estimates and covariance estimates. 
The research discussed in [19] emerged as initial research 
using the Covariance Intersection (CI) approach to solve 
the diffusion-based DKF issue and resolve the issue of 
sensor noise correlation. Theauthors projected an 
innovative DKF in [20] that uses maximum posterior 
probability state estimation to prevent raw data diffusion 
and preserve estimation accuracy.  

The authors in [21] developed the non-repeated 
diffusion technique, which entails deleting messages 
obtained previously from a node and then transmitting the 
relevant messages to that node to prevent the information 
from being diffused. Even in an undirected graph, this 
technique causes information to diffuse only in one 
direction. Secondly, they applied the non-repeated 
diffusion approach to the diffusion-based DKF and 
proposed a novel DKF that uses covariance intersection to 
obtain convex combination coefficients. 

 In as much as Single-task problem has been focused on 
these days, more problems of interest appear to be multi-
tasked which means that it has many optimum parameters 
or state vectors that must be inferred together 
collaboratively. Concerning Kalman filters, much attention 
has not been paid to this aspect. The main contributions of 
our work are as follows: 
1. A derivation of a distributed algorithm for diffusion 
multi-task in the KF domain. 

2.  An unsupervised clustering strategy is integrated, so 
network nodes can determine and select neighbors to 
collaborate with and improve estimation accuracy through 
the combination of weights adaptive adjustments method. 
3. A comparative study of the diffusion multi-task 
performance with reverence to the static and adaptive 
combination weights in the Adapt-Then-Combine (ATC) 
diffusion scheme. 

The other sections of this article are ordered as follows: 
the related works of multi-tasking are deliberated on in 
Section II, and the multi-task problem is formulated and 
discussed in section III. The simulation results and 
discussion were the focus of section IV, and the 
conclusion of the paper is given in section V. 

2. RELATED WORKS 

Quite numerous works have considered problems 
relating to multi-task scenarios. Looking at a case where 
different groups of network nodes track different moving 
targets, nodes inside the same cluster will work together to 
evaluate the same state vector (maybe a vector describing 
position or location of the target). If the targets happen to 
move in a similar form, then it will be beneficial for 
cooperation among clusters since their location vectors are 
related to each other. Concentrating on the distributed 
estimation context, many applications exist in which nodes 
within a network are subject to measure different model 
data or sensor data that vary over the spatial region. 
Distributed multi-sensor multitarget tracking has been 
researched. In [22], Üney et al. developed a distributed 
fusion of Probability Hypothesis Density (PHD), 
Cardinalized PHD (CPHD), and Bernoulli filters through 
merging an expanded form of covariance intersection. In 
[23], Battistelli et al. devised a distributed consensus 
CPHD filter in which individual nodes compute their 
localestimate based on its evaluation and request 
consensus iterations to attain universal fusion across the 
network by iteratively fostering neighborly fusion. Lately, 
for multitarget monitoring, a distributed particle filter 
enactment of the PHD filter has been proposed by Leonard 
et al. [24]. This algorithm has immense computational 
intricacy and transmission load because many weighted 
particles are created at individual nodes and disclosed 
amid neighbors for the phases of adaptation and 
combination. Other multi-task scenarios are researched in 
the Diffusion Least Mean Square and Recursive Least 
Square domain [25], [26], [27], [28]. In Diffusion Kalman 
Filter, little or no work has been carried out regarding 
multi-tasking. Distributed Kalman filtering is among the 
essential information processing procedures in WSNs.  

Owing to its elemental state-space model, which 
considers observational noise, it has been verified to be 
favorable in relation to heightened precision and speedy 
convergence range. In light of this, this work applies the 
multi-task to the Distributed Diffusion Kalman Filter 
(DDKF). The KF is better suited for applications that may 
need fast-tracking and precise tracking of the unknowns, 
especially if the devices can deal with computations that 
are moderately high in complexity compared to the Least 
Mean Square (LMS); this motivates the researcher to 



Int. J. Advanced Networking and Applications   
Volume: 14 Issue: 03 Pages: 5413-5422(2022) ISSN: 0975-0290 

5415 

research the distributed multi-task learning DKF problem 
or networks. The KF algorithm would be focused on as it 
can be seen as the workhouse for tracking in the sense that 
it is an optimal Minimum Mean Squared Error (MMSE) 
estimator. It is a (recursive) weighted sum of the 
prediction and observation. 

In other words, the KF is a context for predicting a 
process state while using measurements to correct or 
“update” the predictions. In this multi-task sensor network, 
which is used to track numerous state vector targets [29], 
fusing information across nodes tasked with distinct 
objectives may compromise their effectiveness and 
provide outcomes that may be undesired and spread 
through the network [30]. Currently, adaptive real-time 
approaches that can group nodes of a network monitoring 
a shared objective are in great demand. Most adaptive 
clustering techniques have been designed using distributed 
least mean square procedure as their reference [31], [32], 
[33], [34].  

Even though these techniques can be useful to the 
network sensors of the DDKF domain, they don't utilize 
the extra information provided in the KF like the state 
evolution model and the state vector estimate error 
covariance matrices. To this end, in this work, a DDKF 
algorithm for a multi-task network is derived, drawing 
ideas from [34]. The derivation gives awareness to the 
process of the DDKF, permitting an adaptive clustering 
technique to be established. The adaptive clustering 
method utilizes the covariance information present in the 
Kalman filtering procedure to recursively revise the state 
estimates from one network node, thereby making 
available valid information regarding the state vector 
information of its neighbors. To the best of our 
knowledge, there is not much work on multi-tasking for 
the KF, probably because of the fundamental challenges of 
target tracking. So, our idea is to propose a distributed 
algorithm for multi-tasking in the KF domain. 

 

2.1 Adaptive combination weights  
The weights of each neighbors combination play a 
significant role in the success ofadaptive networks [35], 
[36]. The Uniform rule [37],Metropolis rule [38], and 
Relative-degree rule [39] aresome proposed combination 
policies in previous studies. To assign combination 
weights, they bank primarily on the degree of the nodes. 
Since they disregard the noise profile across a network, 
these choices can degrade adaptive network performance. 
Since nodes with more neighbors may have a lower signal-
to-noise ratio than nodes with fewer neighbors, 
constructing combination weights for their neighbors 
solely based on the nodes' degrees is inadequate. As a 
result, it is essential to think about the noise profile in the 
nodes while designing the combination strategy. Some 
earlier work in this area includes [40], [41]. In [40], some 
scholars suggested a combination rule called relative 
degree-variance taking into consideration the noise profile 
of nodes. It is observed that [41], with their adaptive 
combination rules has achieved reduced steady-state error 
at a substantial penalty to convergence speed. Other 
combination schemes are implemented [42], [43]. [44] 

based on the purpose of reducing the Mean Square 
Deviation (MSD) of the proposed diffusion adaptive 
networks, two effective adaptive combination strategies 
called relative-instantaneous-error combination strategy 
and relative-deviation combination strategy are associated 
with the opposite of noise by diverse metrics. 

 
Mathematical Notation: Boldface lowercase letters 

symbolize vectors and boldface uppercase letters 
symbolize matrices. The superscripts (. )𝑇 and (. )∗ signify 
transpose and the complex conjugate transpose of a 
matrix/vector, correspondingly. The notation 𝑐𝑜𝑙{. } 
represents the vector attained by stacking its entries in 
succession to one another. Similarly, we use 𝑑𝑖𝑎𝑔{. } to 
represent the (block) diagonal matrix comprising the 
specified vectors or matrices. The mathematical 
expectation is expressed by 𝐸{. }.  {. }−1 represents the 
matrix inverse. The operator || . || denotes the l2-norm of a 

vector. Normal font letters symbolize scalars. 𝐈𝑁 Identity 
matrix of size 𝑁 × 𝑁.  𝑁𝑚 represents the index set of 
nodes in the node’s neighborhood 𝑚, including 𝑚. 𝑁𝑚− 
symbolizes the index set of nodes in the node’s 
neighborhood 𝑚, exclusive of 𝑚. 𝐶𝑖 represents cluster 𝑖, 
i.e., index set of nodes in the 𝑖 − 𝑡ℎ cluster. 𝐶(𝑚) 
represents the cluster of that node k is part of, i.e.,𝐶(𝑚) ={𝐶𝑖: 𝑚 ∈  𝐶𝑖}. 

 
3. MULTI-TASK PROBLEMS AND DIFFUSION 

KALMAN FILTER 
The local optima differ amongst clusters in a multi-task 
network. By lessening the cluster cost function, which 
combines individual nodes' local cost functions from 
equivalent clusters in a distributed fashion, nodes 
belonging to an equivalent cluster can achieve a shared 
optimum. Nodes just swap information locally and 
collaborate with their sub-neighbors in the same cluster, 
with no requirement to share or need task-irrelevant 
universal information. 
 
3.1 Network with various clusters 

A linked network having a node-set 𝑆 = {1,2, …𝑁} which 
is classified into 𝑠commonly unique clusters, indicated by {𝐶𝑙}𝑙=1𝑠  is studied. Each network node m can convey 
information with its bordering agents 𝑁𝑚. A real-time 
cluster containing 𝑚is characterized by 𝐶𝑚,𝑗 = 𝑁𝑚 ∩ 𝑁𝑚,𝑗+ , 
where𝑁𝑚,𝑗+   portrays sub neighbors having equivalent 
objectives as node m acquired by clustering detection at 
time j. 𝑁𝑚,𝑗− ≜ 𝑁𝑚\𝐶𝑚,𝑗 depicts sub neighbors with the 
disparate objective with that of node m at time j. However, 
the sub neighbors in equivalent or disparate clusters of 
nodes in the initial stage remain fuzzy. Figure 1 depicts 10 
nodes divided into two clusters, with colored circles 
illustrating nodes within distinct clusters.  
The solid lines connect sub-neighbors in an equivalent 
cluster at either end, whereas the dotted lines connect sub-
neighbors in separate clusters. Categorically, in Fig. 1(a), 
node 𝑚 and its sub neighbors of equivalent cluster form  𝑁𝑚,𝑗+ = {n,m, 3, 4, 5, 6} whereas the sub neighbors of a 
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cluster distinct from node 𝑚 form 𝑁𝑚,𝑗− = {7}. The clusters 
emerge with time concerning the dynamic clustering 
detection utilized in multi-task networks. Fig. 1(b) depicts 
the steady-state sub networks for every cluster after the 
transformative clustering process. 

 
 

Figure 1. Network topology for multi-tasking: (a) 

networks with two clusters and (b) network clusters 

after the transformative clustering process. 
 

3.2 Problem formulation  

Suppose that the sensor network has 𝑁 sensor nodes and 
there are total 𝑁𝑡 targets, where 𝑁𝑡  ≥ 1. We focus on the 
2D tracking scenario. The state vector of target i, where i = 
1, . . .,𝑁𝑡, time index j is 𝑿𝑖,𝑗 = [𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑥̇𝑖,𝑗 , 𝑦̇𝑖,𝑗]𝑇 
where [𝑥𝑖,𝑗, 𝑦𝑖,𝑗]𝑇 and [ 𝑥̇𝑖,𝑗 , 𝑦̇𝑖,𝑗]𝑇    are the position and 
velocity of the 𝑖𝑡ℎ target at time index j. The evolution of 
the target state vector is modeled as follows in Equation 
(1). 
 𝐗𝑖,𝑗 = 𝐅𝑖,𝑗𝐗𝑖,𝑗 + 𝐆𝑖,𝑗𝐮𝑖,𝑗𝐰𝑖,𝑗     (1) 
 
Where 𝐅𝑖,𝑗 is the transition matrix and 𝐰𝑖,𝑗 is the Gaussian 
system noise with zero mean and covariance 𝐐𝑖,𝑗. The 
measurement vector 𝐲𝑚,𝑖,𝑗  is related to the target state 
vector  𝐱𝑖,𝑗 through: 
 𝐲𝑚,𝑖,𝑗 = 𝐇𝑚,𝑖,𝑗𝑿𝑖,𝑗 + 𝐯𝑚,𝑖,𝑗     (2) 

 
Where 𝐇𝑚,𝑖,𝑗 and 𝐯𝑚,𝑖,𝑗 are the measurement matrix and 
measurement noise of node m of the 𝑖𝑡ℎ target at time j 
respectively. 
A multi-task network environment is studied in which 
distinct clusters execute different tasks. Each agent m has 
an interest in monitoring and tracking a unique M × 1 
unidentified optimum state vector 𝐱𝑚0  . Nodes of 
equivalent clusters estimate the same optimum vector  
 𝐱𝑚0 = 𝐱𝐶𝑙0 ∀𝑚 ∈  𝐶𝑙       (3) 

where the cluster 𝐶𝑖 ∈ {𝐶1, 𝐶2, … 𝐶𝑠}  represents the multi-
task network and every node 𝑚 gathers measurement 
during time 𝑗 for the 𝑖𝑡ℎ  target as indicated in Equation 
(2). It is possible to write a single node cost function that 
minimizes the overall cost function is the mean squared 
deviation form as shown in Equation (4)for the cluster 𝐶𝑖 ∈ {𝐶1, 𝐶2, … 𝐶𝑠}.  
 

𝑀𝑆𝐷𝑚,𝑗|𝑘 = ∑ ∑ 𝐸||𝑚∈𝐶𝑙𝑠𝑙=1 𝐱𝑗 − 𝐱̂𝑚,𝑗|𝑘||2    (4) 

3.3 Adaptive clustering strategy 

The algorithm is initialized by specifying the number of 
clusters to assign tasks and then randomly selecting a node 
to act as a cluster head. The adjacency matrix is then used 
to decide its neighbors based on a given radius to perform 
the same task as one cluster. Automatically, any node not 
assigned to the first cluster is then in cluster two. Since our 
study focuses on two tasks, all other nodes are now 
clustered to perform the second task. After this is done, 
neighboring nodes are determined, and links between inter 
clusters are broken. This strategy is shown in Algorithm 1. 
 
Algorithm 1: Adaptive clustering strategy 

Initialization: 

       Specify the number of clusters to assign 
        # clusters = #targets/tasks 
c  =   # clusters 𝒓 = radius to determine nodes in the 𝒎 
Step 1: 

      For 𝑪 = 𝟐 do 
            Perform clustering to partition the network into 2 
            Randomly select a node as a cluster head (𝒎𝒉) 
                  For 𝒎 = 𝟏:𝑵 
                     If dist (𝒎,𝒎𝒉) ≤ 𝒓 then 
                       add a node  𝒎 to cluster 1 

                     End if 
                  End for 
Step 2:  All selected nodes = cluster 1 
Remaining nodes in network = cluster 2 
End for 
 

3.4 Node clustering by combination matrix selection 

 
To adapt to a multi-task environment, a clustering 

method in which individual node 𝑚 can alter the 
combination weights 𝐶𝑛𝑚  in an online setting, for 𝑛 ∈ 𝑁𝑚 
is used. The strategy is achieved by adjusting the 𝐂 matrix. 
Consider different cost functions for individual nodes to 
improve the versatility of multi-task networks. This 
introduces the issue of information distribution through the 
transfer matrix 𝐀, which can be easily set to identity. 
Equation (5) depicts how each node mixes the state 
vectors conveyed by its neighbors in relation to the 
projected task contrast. 𝑐𝑛𝑚(𝑗 + 1) = ||𝚿𝑚(𝑗+1)+𝐪𝑚(𝑗)−𝚿𝑛(𝑗+1)||−2∑ ||𝚿𝑚(𝑗+1)+𝐪𝑚(𝑗)−𝚿𝑙(𝑗+1)||𝑙∈𝑁𝑚 −2𝑓𝑜𝑟 𝑛∈ 𝑁𝑚    (5) 

where 𝐪𝑚 is an instantaneous error. This rule is useful in 
that it depends on the local estimate to decrease the mean 
square deviation (MSD) bias impact produced via the 
collaboration of close nodes calculating various state 
vectors. The combination rule, as shown in Equation (5), 
to adjust the combination weight, considers the local 
estimates proximity to nearby estimations as well as the 
cost functions local slope. This promotes cooperation 
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among nodes that estimate the same ideal parameter. As a 
result, the MSD bias is reduced, and the estimation 
accuracy is improved. Another way to make use of this 
information is for every agent to apply the mutual 
dependence precept established by 𝐀𝑗|𝑗+1 = 𝐂𝑗|𝑗+1𝑇         (6) 

The reasoning behind this precept is that the value of 𝐶𝑛𝑚  
represents the resemblance of the tasks carried out by 
nodes 𝑚 and 𝑛  together with how they are interpreted by 
node 𝑚. This knowledge should be used by the node 𝑛, 
and the local cost function should be scaled accordingly. 
Since nodes 𝑚 and 𝑛 do not solve the same estimate 
problem, the smaller 𝐶𝑛𝑚 is, the smaller 𝑎𝑛𝑚 should be. 
Algorithm 2 provides an overview of the ATC diffusion 
method with adaptive clustering described by the time-
variant combination matrices 𝑪(𝑗) and 𝑨(𝑗). Considering 
that no preceding knowledge on clusters exists, initializing 
the combination matrices 𝑪(0) and 𝑨(0) with  𝐈𝑁 is 
essential. 
 
3.5 ATC diffusion Kalman filter (dkf) algorithm with 

adaptive clustering for multi-task 

The DKF is studied under the diffusion scheme 
algorithm known as ATC.In the ATC diffusion scheme, 
the nodes adapt and exchange the measurement with their 
neighbors and get the intermediary estimate utilized in the 
combination step to get the optimum state vector. 
Algorithm 2 is composed of two steps: incremental update 
and diffusion update, which can be seen as adaptation and 
combination respectively. Following the initialization of 
the combination matrices, the first adaptive phase employs 
an iterative approach to minimize the individual node cost 
function. Nodes exchange local data amongst neighbors 
and at each point in time 𝑗,  updates 𝚿𝑚,𝑗 ← 𝐱̂𝑚,𝑗|𝑗−1 and 𝐏𝑚,𝑗 ← 𝐏𝑚,𝑗|𝑗−1. After that, every node accomplishes the 
KF with the data it has to generate the intermediate 
estimates thereby adding innovation. The next step 
represents a convex combination of the intermediate 
estimate 𝚿𝑚,𝑗  from the KF which is shared by 
geographically separate data from 𝑙 ∈  𝑁𝑚,𝑗+ , the sub 
neighbors with mutual objectives. That is, it cooperates 
with sub-neighbors of equivalent clusters. 

 
Algorithm 2: ATC DKF with 

adaptiveclusteringformulti-task 

Initialization: Set 𝐀(𝟎) = 𝐈𝑵and𝐂(𝟎) = 𝐈𝑵 
Set𝐗̂𝒎,𝟎|−𝟏 = 𝟎 and 𝐏𝒎,𝟎|−𝟏 = 𝚷𝟎 

For every time instant 𝒋, every node 𝒎compute 
Step1: Adaptation Phase 𝚿𝒎,𝒋 ← 𝐱̂𝒎,𝒋|𝒋−𝟏 𝐏𝒎,𝒋 ← 𝐏𝒎,𝒋|𝒋−𝟏 
For every neighboring node 𝒏 ∈  𝑵𝒎, repeat 
 𝐑𝑒 ← 𝐑𝑛,𝑗 + 𝐇𝑛,𝑗𝐏𝑚,𝑗𝐇𝑛,𝑗∗  𝚿𝑚,𝑗 ← 𝚿𝑚,𝑗 + 𝐏𝑚,𝑗𝐇𝑛,𝑗∗ 𝐑𝑒−1[𝐲𝑛,𝑗 −𝐇𝑛,𝑗𝚿𝑚,𝑗] 𝐏𝑚,𝑗 ← 𝐏𝑚,𝑗 − 𝐏𝑚,𝑗𝐇𝑛,𝑗∗ 𝐑𝑒−1𝐇𝑛,𝑗𝐏𝑚,𝑗 
end for  
Update combination coefficients 

𝐪𝒎,𝒋 = [𝐲𝒎,𝒋 −𝐇𝒎,𝒋𝚿𝒎,𝒋] 
 𝒄𝒏𝒎(𝒋 + 𝟏)= ||𝚿𝒎(𝒋 + 𝟏) + 𝐪𝒎(𝒋) − 𝚿𝒏(𝒋 + 𝟏)||−𝟐∑ ||𝚿𝒎(𝒋 + 𝟏) + 𝐪𝒎(𝒋) − 𝚿𝒍(𝒋 + 𝟏)||𝒍∈𝑵𝒎 −𝟐 

Step 2: Combination Phase 
 𝐗̂𝑚,𝑗|𝑗 = ∑ 𝑐𝑛𝑚(𝑗 + 1)𝑛∈𝑁𝑚 𝚿𝑚,𝑗+1 

 𝐏𝑚,𝑗|𝑗 ← 𝐏𝑚,𝑗 
 𝐗̂𝑚,𝑗+1|𝑗 = 𝐅𝑗𝐗̂𝑚,𝑗|𝑗 
 𝐏𝑚,𝑗+1|𝑗 = 𝐅𝑗𝐏𝑚,𝑗|𝑗𝐅𝑗𝑇 + 𝐆𝑗𝐐𝑗𝐆𝑗𝑇  

4. MULTI-TASK PROBLEMS AND DIFFUSION 

KALMAN FILTER 

4.1 Experimental setup 

This segment includes simulations and performance 
analyses of adaptive clustering and distributed tracking. 
The simulation is run on a linked network with N = 30 
nodes, in a randomly created topology. The challenge with 
estimating and monitoring the location of a projectile is 
considered, in which the sensors from different clusters are 
tasked to obtain noisy measurements of the projectile's 
position.  To illustrate the performance of the developed 
DDKF clustering system works, we considered a target 
tracking application over the network with the main aim of 
each cluster to estimate the precise location of the 
projectile at each time instant in the Kalman filtering 
problem. The system's state is a two-dimensional object's 
unknown location vector, represented by the coordinates (𝑥, 𝑦)where 𝑥and 𝑦 are the first and second entries, 
correspondingly. In the simulation example, the 
projectile's location, velocity, and acceleration are 
represented in Equation (7). 

 

a= [𝑎𝑥𝑎𝑦] , 𝐯 = [𝑣𝑥𝑣𝑦] 𝐝 = [𝑑𝑥𝑑𝑦]       (7) 

For the projectile motion, we have Equation 8: 

a= 𝐯̇, 𝐯 = 𝐝̇𝑎𝑥 = 0, 𝑎𝑦 = −𝑔      (8) 

Where 𝑔 = 10,  the acceleration due to gravity is 
constant. The state x  of the system is gotten by stacking 
the position and velocity of the projectile. Equation (9) 
thus provides the following description of the state 
equation: 

 [ḋv̇]⏟𝑥̇ = [0 𝐈20 0]⏟    𝜃 [dv]⏟𝑥 + [ 𝟎[ 0−𝑔]]⏟  𝑛         (9) 

This can be written in a compact form 𝐱̇ = 𝜽𝐱 + 𝐧. Note 
that for the matrix 𝜽, we have: 
 𝑒𝜃𝛿 = 𝐈 + δθ and ∫ 𝒆𝜃(𝑗0+𝛿−𝜏)𝑑𝜏𝑗0+𝛿𝑗0      (10) 
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As shown in Equation (10). Therefore, the state satisfies 
Equation (11). 
 𝐱(𝑗 + 𝛿) = [𝐈 + δθ]𝐱(𝑗) + [ δ𝐈 − 𝜹𝟐𝜃/2]𝐧   (11) 
 

In Equation (12), for a specific time step δ, F, and u can 
be represented as follows  
 𝐅 ≜ 𝐈 +  δθ and u≜ [ δ𝐈 − 𝜹𝟐𝜃/2]𝐧     (12) 

 

It is presumed that every cluster node calculates the 
location and velocity of the unfamiliar target in the two 
dimensions, i.e., x and y. 
 

The experimental results are achieved by collectively 
averaging over 200 independent trials. Assuming the 
moving target’s initial projectile position is 𝑥0 = 1, 𝑦0 = 30 and the initial velocity for both targets is 𝑣 = 15, 𝜃 = 𝜋 3⁄  𝑎𝑛𝑑 𝜃 = 𝜋 4⁄  is the angle of targets 1 and 2 

respectively.  𝑣𝑥0 = 𝑣 ∗ cos(𝜃) , 𝑣𝑦0 = 𝑣 ∗ sin(𝜃) 
represents the x and y speed. The values of the rest of the 
parameters used in the algorithm are as follows. The size 
of the state vector,𝑀 = 4, measurement noise covariance 
matrix at the node 𝑚  is  𝐑𝑚,𝑗 = 𝝈𝑚,𝑗2 𝐈4 where the noise 

variance 𝝈𝑚,𝑗2  across the nodes is arbitrarily gotten in the 
space 0.5*rand(N,1)+0.01, where rand(N,1) represents the 
arbitrary number in the space of 0 to 1. The first value of 
the state covariance matrix is 𝐏0 = 𝐈0, State noise matrix 𝐆𝑗 = 0.625𝐈4, Covariance state noise matrix 𝐐𝑗 =0.001𝐈4. 

Observation matrix: 𝐇𝑚,𝑗 = [1 00 1 0 00 00 00 0 1 00 1] 
 

State transition matrix:  𝐅𝑗 = [1 00 1 𝑇 00 𝑇0 00 0 1 00 1] 
 

 

4.2 Node clustering and trajectory tracking 
 

In the considered linked network, all nodes have neighbors 
and none is isolated.  Each node of this network has not 
less than four single-step reachable neighbors and at least 
a neighbor who belongs to an equivalent cluster.  
 

 
Figure 2. Initial global network topology 

 
Figure 3. (a) Initial topology of cluster 1 and (b) Initial 

topology of cluster 2 

 
It is presumed that each node measures both position and 
velocity of the unknown target in the two dimensions, x, 
and y.The 30-node network is divided into two mutually 
exclusive clusters with cluster 𝐶1𝜖{21, 16, 27, 26, 11, 4, 25, 6, 23, 2, 7, 12, 29, 9, 5, 30} 
nodes corresponding to the color red and green represents 
cluster𝐶2𝜖{20, 22, 28, 1, 17, 15, 10, 8, 19, 24, 18, 13, 14, 3} 
nodes respectively. Figure 2 depicts the initial network 
topology at the first stage with all potential linkages 
depicted. As illustrated in Fig. 3 (a) and (b), nodes in other 
clusters do not initially create cluster structures because it 
is unknown if a sub neighbor is in an equivalent or 
separate cluster of nodes, and nodes have no idea of its 
cluster at the start. 
 

 
Figure 4. Adaptive clustering topology 

After the clustering operation, the stable network 
architecture that includes subnetworks for each cluster and 
a clustered structure is illustrated in Fig. 4. Each cluster is 
produced once all the relationships between sub-neighbors 
in the distinct clusters are separated, as seen in Fig. 5 (a) 
and (b).  
The simulation compares the results of the three static 
combination weights uniform, metropolis, and relative 
variance, to the adaptive combination weights diffusion 
ATC scheme. However, in as much as the clusters of the 
network have been able to track their various task, it is 
noticed that the adaptive weights have better performance 
compared to the static weights of which they are 
superimposed. This is because with respect to time, 
networks can track the trajectory of the projectile and how 
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the different weight behaves. The adaptive combiners can 
adjust and assign a weight to befitting neighbors. Figure 6 
shows the plot for the two clusters. 
 

 
Figure 5. (a)Final topology of cluster 1 and (b)Final 

topology of cluster 2. 

 

 
Figure 6 Trajectory plot showing the performance of 

the two clusters with the various combination rules. 

 
4.3 Global mean-square performance 

When analyzing the error convergence capabilities of 
an algorithm, the MSD is a crucial quantity to look at. The 
primary function of MSD is to reproduce the disparity 
between the actual state 𝐗𝑖,𝑗and the estimated state 𝐗̂𝑖,𝑗. 
Fig. 7 presents the MSD of the algorithms throughout the 
whole of the network. After 40 rounds, the ATC algorithm 
arrives to the correct solution. The policy is shown to be 
appropriate for a dynamic real-time system by the rapid 
convergence that was observed. The following inference 
may be made based on the outcome of the algorithm: the 
weight value c stated in algorithm 2 suggests that 
diffusion methods are a better match for dispersed 
algorithms. This ensures that the value c  will always be 
stochastic and is better suited to the features of a dispersed 
network. 

At the first 40 iterations, the clusters through the 
Kalman diffusion strategy get used to their task and 
eventually can track their projectile. It is seen from the 
MSD plots in Fig. 7 and 8that adaptive weights have 
outperformed the static combination weights. it is also 
observed that there is no significant difference between the 
static combination weights. 

 

 
Figure 7 MSD plot for cluster 1. 

 

 
Figure 8 MSD plot for cluster 2. 

 
5. CONCLUSION 

This study focused on distributed diffusion Kalman 
filters and clustering framework for multi-task networks 
through adaptive clustering. An adaptive clustering 
method that utilizes an adjustment via adaptive 
combination weights for accurate clustering was used, 
which enabled nodes to select and collaborate with nodes 
within their cluster. The ATC diffusion scheme was 
implemented in the multi-task problem, and a comparison 
was made between static combination and adaptive rules 
to ascertain its performance. Only the exchange of local 
state vector estimations and their related covariance 
information is vital for the established framework. We 
have carried out simulations and presented simulation 
results illustrating the performance of the diffusion KF 
multi-task algorithms, which shows the algorithm was able 
to form clusters adaptively and track the target. The 
limitations of this work are: 

1. The proposed study focused on tracking a 
minimum of two objects due to computational 
complexities.  

2. More so, with respect to time constraints, the 
study only focused on a stationary environment 
with a static number of targets at every time 
instant. 
 

The scope of this study focused on two targets and 
hence two clusters were generated adaptively. However, to 
extend the scope of this study, there isroom to improve 
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and explore the algorithm studied in this work by 
considering more targets which will mean segregating the 
network adaptively to track these targets. Energy 
efficiency is another fascinating issue that analyzes how to 
reduce the energy required for sensor motions. Also, 
implementing the algorithm in an environment that is non-
stationary and where the number of targets is not constant, 
changing at a specific point in time would be an 
interesting research area. 
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