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-------------------------------------------------------------------ABSTRACT---------------------------------------------------------------  
Even though there are various source code plagiarism detection approaches, most of them are only concerned 

with lexical similarities attack with an assumption that plagiarism is only conducted by students who are not 

proficient in programming. However, plagiarism is often conducted not only due to student incapability but also 

because of bad time management. Thus, semantic similarity attacks should be detected and evaluated. This 

research proposes a source code semantic similarity detection approach that can detect most source code 

similarities by representing the source code into an Abstract Syntax Tree (AST) and evaluating similarity using a 

Siamese neural network. Since AST is a language-dependent feature, the SOCO dataset is selected which consists 

of C++ program codes. Based on the evaluation, it can be concluded that our approach is more effective than most 

of the existing systems for detecting source code plagiarism. The proposed strategy was implemented and an 

experimental study based on the AI-SOCO dataset revealed that the proposed similarity measure achieved better 

performance for the recommendation system in terms of precision, recall, and f1 score by 15%, 10%, and 22% 

respectively in the 100,000 datasets. In the future, it is suggested that the system can be improved by detecting 

inter-language source code similarity. 
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1. INTRODUCTION 

Plagiarism of source-code is a growing problem due to 

the growth of source-code repositories, and digital 
documents found on the Internet. Therefore, identification 
of source code re-use is an interesting topic from two 
points of view. Firstly, the industries that produces 
software are always looking for a way to protect their 
developments, thus they usually search for any sign of 
unauthorized use of their own blocks of source code. 
Secondly, in the academic field, copying programs is now 
a well-known habit among students. Such phenomena is 
also motivated due to the vast number of open source 
codes available on the internet today and some proposed 
restructure approaches [26].  Probably every instructor of 
a programming course has been concerned about possible 
plagiarism in the program solutions turned in by students. 
Consequently, source code re-use detection has become an 
important research topic, motivating different groups of 
researchers [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. To 
build automatic systems to detect software plagiarism. For 
example, [3] was able to detect source code plagiarism 

using machine learning technique by transforming source 
code into abstract syntax trees and then split up the tree 
into functions, the tree for each function is considered a 
document. This document collection is fed to an SVM 
package using a kernel that operates on tree structured 
data with a given author and a classifier was trained with 
source code from two authors, and is then able to predict 
which of the two authors plagiarized a new 
function.[8]Also tried to detect source code plagiarism 
based on Abstract Syntax Tree (AST) but the system was 
not scalable due to lots of pairwise comparison of tree 
structures. Therefore, [10] approached the problem of 
scalability in an information retrieval perspective. While 
the IR approach is efficient, it is essentially unsupervised 
in nature. Therefore, to improve the effectiveness of their 
work, they applied a supervised classifier (trained on 
features extracted from sample plagiarized source code 
pairs) on the top ranked retrieved documents. Their work 
evaluated a set of three different types of features in order 
to determine the similarity between code sources. The 
features are: 1) lexical (character n-grams), 2) structural 
(function names and parameter names and types), and 3) 
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stylistic (the number of lines of code, the number of white 
spaces, the number of tabulations, the number of empty 
lines, the number of defined functions, average word 
length, the number of upper case letters, the number of 
lower case letters, the number of underscores, vocabulary 
size, and the lexical richness). This combination has 
shown important aspects, with acceptable results, for 
determining plagiarism between pairs of Java source 
codes. However, the combination of these features is more 
oriented in detecting plagiarism based on the lexical 
similarities between documents.  
After evaluating the stated features, the system compute 
their similarity using the cosine similarity measure. This 
cosine similarity algorithm calculates the similarity 
between two text documents by counting all 3-grams 
available in the documents and stores them in an M 
dimensional vector, where M is the number of unique N- 
grams found in the passage. Cosine similarity algorithm 
uses these vectors to compare documents.  Generally, 
cosine similarity measure has better recall and precision 
than most of other text similarity measures like Pearson 
correlation coefficient (PCC), Jaccard or mean square 
difference (MSD) [11]. However, this measure involves 
simultaneous comparison of a single document to all other 
documents and the vectorization step might depend on 
whole document corpus storing the vectored form of each 
document resulting to the storage of large amount of data. 
Also, due to excessive comparison step by the cosine 
similarity algorithm, the system has high complexity of O 
(𝑛2). Cosine similarity has a very effective drawback; it 
computes similarity based on frequency of words therefore 
it is unable to detect semantic similarities between 
documents; producing inaccurate results. However the 
AST representation of the source code documents ignores 
the existence of functions which a very essential user 
input. 
To address the above mentioned problems, in this study 
we propose an enhanced plagiarism detection method 
called AST_Neural System,where some additional terms 
will be added as an AST node instead of a table [24], 
because a tree captures aspect of source code that are 
inherent to the programmer’s input more than the lexical 
features of a particular programming language. The 
system employs a model that captures both lexical and 
semantic similarities between documents in order to 
produce more accurate results. 
 

2. RELATED WORKS  
A. Alex. [1] Developed a source code plagiarism detection 
system called MOSS. MOSS (measure of software 
similarity) is based on a string matching algorithm that 
functions by dividing programs into k-grams, where k is a 
contiguous substring of length k. each k-gram is hashed 
and MOSS selects a subset of these hash values as the 
program’s fingerprints. Similarity is determined by the 
number of fingerprints shared by the programs, i.e. the 
more fingerprints they shared the more similar they are. 
For each pair of source code fragments detected, the 
results summary includes the number of tokens matched, 
the number of lines matched and the percentage of source 

code overlap between the detected file pairs. MOSS is a 
wonderful system and a major advancement in the 
plagiarism detection area. However, the system can only 
detect the copy and paste plagiarism effectively and 
produce much false retrieves when dealing with more 
complicated plagiarism cases.   
I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier. [2] 
Presented a simple and practical methods for detecting 
exact and near miss clones by using AST in program 
source code. The method was based on hashing, firstly the 
source code was parsed and an AST was produced for it 
and then three main algorithms were applied to find 
clones. The first algorithm (basic algorithm) was to detect 
sub tree clones, the second (sequence detection algorithm) 
was to detect variable size sequence of sub-tree clones and 
the third (last algorithm) looks for more complex near 
miss clones by attempting to generalize combinations of 
other clones. For the algorithms to find sub tree clones to 
function, every sub tree is compared to every other sub 
tree for equality. The method is straight forward to 
implement but the algorithms used performs better on a 
dataflow graph than trees. This may likely results to high 
number of false positive retrieves when detecting near 
miss clones.  B. N. Pellin [3] presented a technique for 
detecting authorship of a source code. He used machine 
learning technique to accomplish the task by transforming 
source code into abstract syntax trees and then split up the 
tree into function. The tree for each function is considered 
a document, with a given author. This collection is fed to 
an SVM package using a kernel that operates on tree 
structured data. The classifier is trained with source code 
from two authors, and is then able to prediction which of 
the two authors wrote a new function. The method was 
able to achieve between 67% and 88% classification 
accuracy over the set of programs examined. However, the 
method is highly vulnerable to manipulation of the source 
code, an advanced source code translator or obfuscator 
could destroy the patterns that their classifier uses to 
identify authors and also it requires that you know the set 
of possible authors. J. Son, S. Park, and S. Park [5] 
proposed a plagiarism detection system that uses parse tree 
kernels. The role of the parse tree kernels in the system is 
to handle the structural information within source 
programs and to measure the similarity between parse 
trees extracted. The system performs 100% accurate for a 
simple attack and it is not affected by structural attack. 
The system is independent of programming languages. 
Due to the structure of copied programs which includes a 
lot of abundant garbage, a lot of plagiarism detection 
systems fail in detecting plagiarism. However, the system 
is liable to present false positive outcomes because the 
similarity values of the parse tree kernels increases too fast 
to handle and the value of the kernels between two 
different trees is typically much smaller than the value 
between same trees. C. Liu, C. Chen, J. Han and P. S. Yu. 
[6] Developed a new software plagiarism detection tool 
called GPlag by mining program dependence graphs 
(PDGs). GPlag is a PDG-based scalable detection tool. 
The tool works using a PDG-based plagiarism detection 
tool, it takes an original program and a suspected 
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plagiarized program as input. And outputs a set of PDG 
pairs that are regarded as involving plagiarism. 
Experiments showed that GPlag is both effective and 
efficient. However people need to examine the returned 
PDG pairs to confirm plagiarism and/or eliminate false 
positives, which makes the tool plagiarism manual. D. 
Zou, W. Long, and Z. Ling.[4] described a cluster-based 
plagiarism detection method to detect plagiarism in the 
network engineering related courses. The method consist 
of 3 steps: the first step is the preselect step, which is to 
find a small list of candidate documents from the source 
document set which may contain the plagiarized content. 
The next step is to compare the suspicious document with 
each candidate document to get the copied part from the 
suspicious document, this step is called locating. The last 
step is called post processing, which is to discard some 
fragments without plagiarism from the end result. The 
method was tested on both the training and testing set for 
PAN-09 and proved to be effective, but due to its multiple 
operating steps, it consumes much execution time. 
Therefore, the method is said to have very high big O 
complexity. E. Flores, A. Barro ´n-Ceden ˜o, P. Rosso, and 
L. Moreno. [11] Proposed a simple approach to the 
detection of cross-language source code re-use. Their 
experiment was based on character 3-grams comparison 
and where able to achieve acceptable result when 
comments were ignored. However, due to the massive 
number of similar keywords in a programming language, 
the character n-grams results to an over estimation of 
lexical similarities producing inaccurate results. 
To detect plagiarism, most existing commercial software 
adopt methods like sentence matching or keyword 
matching to detect plagiarism; such methods are learnt to 
be ineffective. Therefore, [7] introduced a detection 
method to solve the “copy paste” and “paraphrasing” type 
plagiarisms. He proposed the cosine metric factor to 
illustrate the relevance among documents. Data was first 
preprocessed by removing stop words to eliminate the 
relevance among unwanted words. The processed data was 
later stemmed to get the original form of words in the 
documents. The cosine metric factor was then proposed to 
illustrate the relevance among documents. However, the 
method can only work when the correct source is 
provided, improper edition of the reference makes the 
method inefficient. Z. Duric, and D. Gasevic. [8] Designed 
and developed a source code similarity detection system 
(SCSDS) in order to solve the problem of structural 
modification source code which is a confusing factor for 
most similarity detection systems, making them produce 
inefficient results. The system consist of two parts, 
SCSDS core and SCSDS frontend. The first part SCSDS 
core consist of four modules, the preprocessing module; 
which perform preprocessing on the source document and 
forward its output to the tokenized module. The tokenized 
module performs the tokenization, which is a similarity 
determination between file documents, the results of the 
module is sent to the exclusion module. The exclusion 
module removes an “exclusion token sequence” from the 
list of tokens obtained from the tokenization module. The 
resulting list of tokens will be forwarded to the comparator 

module. The comparator module is responsible for 
similarity measurement using RKR-GST comparator 
(which implements the RKR-GST algorithm) and the 
Winnowing comparator (which implements the 
Winnowing algorithm). The second part, that’s the SCSDS 
frontend is responsible for selection of source code files 
for comparison and displaying of similarity measurement 
results. The system was tested on set of java source files. 
It also showed promising results in terms of performance 
compared to JPlag. However, SCSDS has no 
preprocessing module for other programming languages 
except Java, and an efficient and easy accessible user 
interface is critical to wide adoption.    
L. Zhang, D. Liu, Y. Li, and M. Zhong. [9] Developed a 
code copy detection system based on AST. The system 
converted the code to AST after undergoing some 
preprocessing stages and formatting, it was able to detect 
plagiarism by calculating similarity for the AST. Due to 
lots of pairwise comparison, the system cannot process 
large dataset and have relatively high complexity, also it 
can only perform on C programming language. S. 
Narayanan and S. Simi. [12] Developed an algorithm 
based on fingerprint approach to identify the reuse of 
source code in direct and indirect ways. The system used 
multiple phases to detect plagiarism effectively. It takes 
source code from the database as input, and it will pass 
through the code restructuring, tokenization, complexity 
analyzing and the similarity computation phases. It will 
outputs the similarity score after passing through the 
presented stages. The files will be compared to figure out 
the similarities and the plagiarism detection reliability 
measure is based on precision and recall. The system was 
tested using large datasets in C, C++, java, and c# 
programming languages. However, the system was only 
limited to the stated programming languages and 
ineffective in inter language similarity. 
Another common approach to source code plagiarism 
detection is to determine the fingerprint of a source code 
document by making use of the word n-grams. R. 
Marinescu. [13] Proposed a system for code refactoring, 
representing different source code segments with hashes 
which are compared using the Winnowing algorithm. The 
system was able to detect any proof of cheating and it 
works against different level of similarity, low level 
similarity till high level ones. However, this approach 
does not consider important characteristics inherent to 
source code such as keywords, identifiers names, number 
of lines, number of terms per line, number of  hapaxes 
etc. S. Ion and I. Bogdan. [14] Proposed a source code 
plagiarism detection method. The method was based on 
ontologies created using protégé editor. They build 
ontologies for each source code that is suspected of 
plagiarism based on the vocabulary and taxonomy of a 
programming language source code using protégé (a free 
open source ontology editor). This process is done 
automatically using a crawler. The crawler will read the 
read the code line by line from top to bottom and will 
create the specific individuals for each line of code and 
the individual ontologies created from the presented 
process will be compared to see the plagiarism degree. 
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The method is suitable for complex software plagiarism 
detection but have a little drawback, the system is not 
fully automatic. T. Ohmann and I. Rahal. [15] Presented 
an approach called program it yourself (PIY) which 
utilized K-gram-based pairwise document comparison 
and PAM clustering. The system achieves high plagiarism 
detection accuracy with far lower runtime. However, the 
system can only process 10,000 documents and below 
which makes the system highly inefficient. J. Zhao, K. 
Xia, Y. Fu, and B. Cui. [16]Proposed an effective 
plagiarism detection algorithm based on AST. The 
algorithm compared code based on AST, it raised the 
efficiency of comparison by transforming the storage 
format of the syntax tree twice and converting the tree-
like structure in a linear list and regrouping the sub tree 
according to the number of sub-nodes. The algorithm also 
reduce mistakes by calculating the hash value of 
operations (subtraction, division, modulo arithmetic, etc.). 
It was concluded that the system; code comparison 
algorithm (AST-CC) can perform more efficiently than 
AST because of its storage form. Therefore, just like AST 
the system can process large data set but due to lots of 
pairwise comparison, the system possess relatively high 
complexity. N. More, A. A. Bhootra and C. A. Patel. [17] 
Showed a method to detect plagiarism in Java source 
code. Firstly, the files were uploaded and comments were 
removed at the initial step. A token file was created for 
each uploaded source code. The token files were 
compared, the result of each comparison is a value called 
percent match. If the percent match of a pair of token files 
is larger than the minimum value, then the comparison 
pair will be assumed to be plagiarized. This is done to 
every file in the submitted folder. The method was tested 
on a set of students’ assignment and was proved to be 
effective. However, the method can only work on small 
collection of dataset and can only process Java files. N. 
Shah, S. Modha, and d. Dave. [18] Proposed plagiarism 
detection methods which analyze source code using 3 
different representations. The method represent code in 3 
views; lexical, structural and stylistic. The method tries to 
find similarities based on these 3 representations. Manual 
threshold of the two codes are being computed for each 
view. The approach was concluded to give sufficient 
results by achieving the best precision at 97.87% and 
recall at 84.52%. However, only 3 structures were taking 
into consideration and the structural similarity is of low 
quality. Also, due to lots of pairwise comparison, the 
method cannot process large dataset and has high 
complexity. O. Karnalim. [19] Proposed a source code 
plagiarism detection which can detect plagiarism at any 
level by utilizing low-level instructions instead of source 
code tokens. The author selected java as target 
programming language and bytecode as its low-level 
instruction. It was evaluated that the approach is more 
effective to detect most plagiarism attack types than raw 
source code approach. However, the method was unable 
to handle plagiarism attacks in object-oriented 
programming. O. Karnalim. [20] Proposed an expansion 
of the Karnalim’s approach for plagiarism detection based 
on low-level tokens, by incorporating three contributions, 

which are: flow-based token weighting which reduced the 
number of false-positive results, an argument removal 
heuristic that generates more accurate linearized method 
content and the invoked method removal that fastened the 
processing time. The approach was proved to be partially 
effective to handle plagiarism attacks in practical 
environment, however it is unable to handle source code 
plagiarism in object oriented environment. M. Duracik, E. 
Kirsak, and P. Hrkut. [21] Developed a system which 
focuses on representing source code using AST in order 
to detect plagiarism. The system represents source code 
using hashing and characteristics vector. They carried out 
an experiment based on these two approaches and tried to 
compute the similarity of classes as well as methods in a 
source code dataset; which consists of 59 student 
submissions. They tried to minimize absolute similarity 
comparison (addressing the weakness of the MOSS 
algorithm) but their system was unable to achieve 
scalability and also some false positive matches were 
generated at lower values. However, the system was able 
to prove that generating vectors using AST is the best 
appropriate way of representing source code M. Duracik, 
E. Kirsak, and P. Hrkut. [22] Developed a new scalable 
system to detect plagiarism in a huge number of source 
files by applying an incremental clustering approach in 
order to achieve modularity and scalability. The system 
transformed the source code into an AST, then 
characteristics vectors were generated from the tree. 
These vectors are clustered by the system using 
incremental k-means algorithm and inserted into a 
database. Similar vectors are then searched in the 
database and are post-processed. A final plagiarism report 
that contains a similarity score and parts of matched 
source code snippets was generated. The system can 
successfully replace the MOSS system because of its 
scalability and ability to search for plagiarism on a much 
larger scale. However, adding data to the database and 
maintaining consistency by re-clustering is time 
consuming operation and also the algorithm speed was 
not evaluated.     
O. Karnalim. [23] Extended the karnalinm’s work, a low-
level approach for detecting java source code plagiarism 
by incorporating abstract method linearization. The 
method was to enhance the accuracy of low-level 
approach in term of detecting plagiarism in object-oriented 
environment. It incorporated linearization to predict the 
content of abstract method by concatenating all method 
contents from its respective implementers. The method 
produced less false positive retrieves and provides more 
accurate results since it only considered semantic 
preserving token. Despite its accuracy, the method suffers 
a drawback. It cannot detect several short similar pairs 
which can only be detected through standard lexical token 
approach. D. Ganguly, G. J. F. Jones, A. Ramı´rez-de-la-
Cruz, G. Ramı ´rez-de-la-Rosa, and E. Villatoro-Tello. 
[10] Proposed a scalable source code plagiarism method 
using information retrieval approach. They perform their 
experiment in stages, for the first stage they retrieve a 
ranked list of documents using the AST representation of 
source code. At the second stage, they employ a 
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supervised approach to perform a more fined grained 
analysis over the set of retrieved documents from the first 
stage. Their work was able to achieve scalability but due 
to the combination of features used at the supervised stage, 
the system was unable to produce accurate result and also 
the similarity measure can only detect lexical similarities. 
The above literature review presented in this chapter 
describes different source code plagiarism detection 
systems. This system works based on different methods 
and approaches.  The strengths and weaknesses of the 
systems were also highlighted, up to the last review. The 
methods were able to detect plagiarism thou mostly on a 
small dataset and they are likely to produce false positive 
results. A research gap was described which will be 
address in this research. 

3. MATERIALS AND METHODS 

Ast_neural system  
To address the above problem, the following system is 
proposed.This section describes the proposed plagiarism 
detection method that improved the method described in 
4.1the system   presents an improved approach of the 
previous version of anti_bow system.   
The system performs in two stages, the IR stage and the 
similarity evaluation stage. At the IR stage, the documents 
are represented as an AST and a pseudo-query was 
extracted from a preset number of terms from each field of 
a document. The selected fields are: 
i. Classes: names of java were considered. 

ii. Method calls: Method names with actual 
parameter names and types. 

iii.  String literals: Values of the strings 

iv. Method definitions: Names of methods and 
formal parameter names and types 

v.  Package imports: names of imported packages  
vi. Arrays: Constant names of array and dimension 

vii. Assignment statements: Variable names and 
types 

viii. Comment: Text inside comments 

ix. Functions: Function definitions and number of 
function calls   

The following are the specific nodes of the AST that was 
used, not whole source code documents is used as a 
pseudo-query. 
The field language model (LM) was used as the term 
selection function to obtain representative terms from each 
field. Firstly, the approach introduces a new field to the 
AST. The addition of a field in the AST representation can 
guarantee an improvement at the retrieval stage. After the 
first k terms are retrieved instead of employing a classifier 
for classification, this approach employs the Siamese 
Neural Model (SNM) to capture deep semantic similarities 
from the retrieved documents from the IR stage. The first 
step in an SNM is the word embedding and word 
frequency. The source code will be split into variables, 
function name, operators, reserved words, constant values 
and others. Each of the word is mapped to its 
corresponding vector with a frequency. Then the second 

step is the source code representation, the input are code 
matrices gotten from the previous step. And the last step, 
the similarity feature is calculated based on hidden 
features of code snippets.   

3.1 WORD EMBEDDING 

Word2Vec is a widely word embedding model applied in 
NLP. When using word to vectors to represent code 
snippet, the weight of all word vectors are equally. But, 
we all know the contribution of each word in code is 
different. For source code snippets, the weight should 
reflect the structure of source code. In order to improve 
the effect of code presentation, the words of control 
structure should have different coefficients and multiplied 
by the word frequency of it. So, the vector of code snippet 
is represented as  𝑈 = {𝑓1𝑤1, … , 𝑓𝑖𝑤𝑖 , … , 𝑓𝑚𝑤𝑚}, where 𝑤𝑖 ∈ 𝑊 is the 𝑖𝑡ℎ 
row of embedding matrix W, {𝑓1, 𝑓2, … , 𝑓𝑚}is Tf-Idf value 
of each word, m is the number of words in code snippets. 

3.2 CODE REPRESENTATION 

This in the previous stage, we got the embedded matrix U, 
at this stage both the semantic and the structural materials 
for the input source code will be represented. This stage is 
the CNN model, it contains five layers: input layer, 
convolution layer, pooling layer, connection layer and 
output layer. 
Input Layer: A pair of pre-trained word embedding 
matrix𝑈𝐴, 𝑈𝐵 are taking as input. 𝑈𝐴 ∈ 𝑅𝑁1×𝑑, 𝑈𝐵 ∈𝑅𝑁2×𝑑    , where𝑁1, 𝑁2is the number of words respectively 
in source code A and B, d is the vector dimension. The 
two code snippets are padded with 0 to have the same 
length 𝑁 =  𝑚𝑎𝑥{𝑁1, 𝑁2}. After filling with 0, the 
initialized matrix 𝑈 ∈ 𝑅𝑁×𝑑.  
Convolution Layer: Each kernel  𝐾 ∈ 𝑅𝑠×𝑑 does 
convolution operation in the word sequence{𝑣1, 𝑣2, … , 𝑣𝑛}. 𝑝𝑖 = 𝑈𝑖 ∗ 𝐾                                                                  (4.1) 
Here, ∗ is convolution operator,𝑈𝑖 = {𝑈𝑖 , 𝑈𝑖+1, … , 𝑈𝑖+𝑠−1}, 
that is the embedding matrix of word 
sequence{𝑣𝑖 , 𝑣𝑖+1 , … , 𝑣𝑖+𝑠−1},1 ≤ 𝑖 ≤ 𝑁 − 𝑆 + 1. 𝑝𝑖Is a 
real number, because the dimensions of kernel and word 
vector are same. 𝑝𝑖 = {𝑝𝑖 , 𝑝𝑖+1, … , 𝑝𝑖+𝑠−1} ∈ 𝑅𝑑1, where 𝑑1=𝑁 − 𝑠 + 1.  

Pooling Layer: Pooling (including min, max, average 
pooling) is commonly used to extract robust features from 
convolution, to reduce its dimension. A convolution layer 
transforms an input feature map U with d columns into a 
new feature map P with one column. The maximum is 
gotten after each max-pooling over each vector P, which 
can be expressed as: 𝑥𝑖 = 𝑚𝑎𝑥{𝑝𝑖}   𝑖 = 1,2, … , 𝑁                                (4.2)    
Where N is the filter number that was set in convolution 
layer.  
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Connection Layer: In connection layer, each 𝑥𝑖 is 
concatenated which was gotten from pooling layer, into a 
vector for source code A and B.  𝑋 =  𝑥1 ⊕ 𝑥2, . . . ,⊕ 𝑥𝑀                                             (4.3) 

Where ⊕ is the operation that merges two vectors into a 
long vector, X is a new feature map for source code.   

E.g.𝑎 ⊕ 𝑏 

 Using Pythagoras theorem 𝑐2 = 𝑎2 + 𝑏2 𝑅2 = 𝑎2 + 𝑏2 𝑅 = √𝑎2 + 𝑏2 
Where R is the resolution of the concatenated vector. 
Output Layer: this layer computes the similarity score. 
The Layer targets at calculating the similarity score of 
each source code pair, which can be used to rank 
candidate code snippets to find similar ones for any source 
code. The similarity score of the input pair is computed by 
using cosine function on new feature vectors X which 
leverage their semantic representations and structure 
representations. 𝑠𝑖𝑚(𝑋𝐴, 𝑋𝐵) = 𝑋𝐴.𝑋𝐵||𝑋𝐴||2||𝑋𝐵||2                                      (4.4) 

Where ·  is inner product of vector 𝑋𝐴 and𝑋𝐵, where 𝑋𝐴 = ||𝑋𝐴||2 and 𝑋𝐵||2  is their 2-norm. Those code 
snippets with the largest similarity score will be returned 
as similar codes of the given one. 
 
Algorithm 1: IR stage  
Input: Dataset Consisting Of Documents 
(𝐷1,𝐷2, … … … . . 𝐷𝑁)                    
Output: suspected documents          

1. WHILE AST representation    // represent source 
code into an AST 

2. For each source code document      do 

3. 𝐿𝑀(𝑡, 𝑓, 𝑑) = 𝜆 𝑡𝑓(𝑡,𝑓,𝑑)𝑙𝑒𝑛(𝑓,𝑑)  + (1 − 𝜆) 𝑐𝑓(𝑡)𝑐𝑠  //term 

selection function 

4. CONSTRUCT a Pseudo-query //the suspicious 
document is considered a query 

5. RETRIEVE documents        //retrieve a ranked 
list of documents from the dataset 

6. Query_Search(Dataset) //perform a grid search 
of documents from the dataset 

7. Return suspected documents   
Algorithm 2: Similarity Evaluation stage  
Input: Suspected Documents                    
Output: Plagiarized documents        

1. For all suspected documents do 
2. CONVERT word to vector  
3. 𝑈 = {𝑓1. 𝑤1 … … 𝑓𝑖 . 𝑤𝑖 … … 𝑓𝑚. 𝑤𝑚} 
4. Represent semantic and structural materials 

5. 𝑈𝐴, 𝑈𝐵  = INPUT    //𝑈𝐴, 𝑈𝐵  are pre-trained 
embedding matrix 

6. 𝑈𝐴 ∈ 𝑅𝑁1×𝑑, 𝑈𝐵 ∈ 𝑅𝑁2×𝑑     //𝑁1, 𝑁2 are number 
of words in source code A and B 

7. For each Kernel in the vector  {𝑣1, 𝑣2 … … . 𝑣𝑛} 
do 

8.  𝑝𝑖 = 𝑈𝑖 ∗ 𝐾, 𝑈𝑖 = {𝑈𝑖 , 𝑈𝑖+1 … … 𝑈𝑖+𝑠−1} 
9.    EXTRACT robust features  
10. 𝑥𝑖 = 𝑚𝑎𝑥{𝑝𝑖}       𝑖 = 1,2, … … 𝑁 
11.   CONCATENATE each 𝑥𝑖 in a vector //for 

source code A and B 
12. 𝑋 =  𝑥1 ⊕ 𝑥2 , . . ., ⊕ 𝑥𝑀 
13.   COMPUTE similarity  

14. 𝑠𝑖𝑚(𝑋𝐴, 𝑋𝐵) = 𝑋𝐴.𝑋𝐵||𝑋𝐴||2||𝑋𝐵||2 

15.  IF 𝑠𝑖𝑚(𝑋𝐴, 𝑋𝐵) ≠ 0 
16. Return plagiarized document 
17. Else  

Return none plagiarized 

4. EXPERIMENTS AND RESULTS 

This section discusses the experimental setup to evaluate 
our proposed AST_neural system. The effectiveness of 
the system was evaluated using F-Score, Precision, and 
Recall, evaluation metrics. Precision, Recall and F-Score 
are used because they are of probabilistic setting which 
allow us to obtain more accurate values rather than 
estimates. These combination of metrics is also suitable 
on different source codes from the same dataset where 
competing results are obtained on the same data. 
 
4.1 Experimental setup 
In this study, python 3.9 with pandas, numpy, matplotlib, 
SCIKITLearn libraries were used for the implementation 
and evaluation of the proposed system. The AST for each 
Java source code was obtained with the help of ‘‘Java 
parser’’ which is an open source syntax parser for Java 
programs. Information extracted from the AST nodes was 
then used to construct the field representation for every 
document in the index. We indexed the document set 
using Lucene (version 4.6). A HP Stream 11 was used for 
the experiment over a Linux operating system. 

4.2 Data set 

AI-SOCO dataset were considered which contain a 
considerable amount of programs. The AI-SOCO dataset 
is essential to detection of undesirable deception of 
others’ content misuse or exposing the owners of some 
anonymous hurtful content. This is done by revealing the 
author of that content. This facilitates solving issues 
related to cheating in academic, work and open source 
environments. Also, it can be helpful in detecting the 
authors of malware software’s over the world. The dataset 
is composed of source codes collected from the open 
submissions in the Code forcesonline judge. A code force 
is an online judge for hosting competitive programming 
contests such that each contest consists of multiple 
problems to be solved by the participants. A Code forces 
participant can solve a problem by writing a solution for it 
using any of the available programming languages on the 

http://www.google.com/url?q=http%3A%2F%2Fcodeforces.com%2F&sa=D&sntz=1&usg=AOvVaw15cjVBh93cmaeyXBceTJCn
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website, and then submitting the solution through the 
website. The solution's result can be correct (accepted) or 
incorrect (wrong answer, time limit exceeded, etc.). The 
dataset consists of 100 source code documents collected 
from 1,000 users. So the total of source codes documents 
is 100,000. For each user, all collected source codes are 
from unique problems.  The issue of scalability has been 
tackled. This can be obtained at the github repository. We 
decide to use AI-SOCO dataset because all collected 
source codes are dataset collection are correct, bug-free 
and compile-ready. For each user submission, all 
collected source codes are from unique problems. 
 
4.3 Result and Discussion  

4.3.1 Results 

This section presents the results of the experiments for the 
evaluation of the enhanced plagiarism detection method 
compared to anti_BoW system. Several experiments were 
conducted to detect plagiarism. The results obtained are 
presented as follows: 
The Table 1: bellow shows the overall result of our 
proposed schemes. 
 

Table 1: Overall results 

 

4.3.2 Discussion  
Fig. 2, 3 and 4 demonstrate the precision, recall and f1 
score of the Ast_neural system as compared to anti_bag of 
words detection method. The figures show that Ast_neural 
system has a higher precision and recall values compared 
to the other plagiarism detection method. The reason for 
this performance is the improvement at the IR stage and 
also the replacement of the classification phase with the 
Siamese neural network which helps to capture the 
semantic similarities available.  
In Fig. 2, it shows the precision values measured 
individually for both methods with the intention to observe 
the new method’s effectiveness. The results were obtained 
when testing the first 100 documents retrieved from the IR 
stage. It was observed that the previous method has an 
increasing precision from the first 40 documents and it 
became constant once the documents are more than 40, 
while the enhanced method its precision increased once 
the number of number of documents increases. This shows 
that the new method shows more effective result when 
testing with a large dataset. 
The second figure (Fig. 3) shows the recall of the two 
methods. From the graph, it shows that Ast_neural method 
outperformed the anti_bow method with 10%. The 
anti_bow method considered 20 documents and above to 
measure recall while Ast_neural method considered even 
lesser amount of documents. The two methods have an 
equal recall when considering 20 documents that is 

because both methods consider a number of 20 documents 
from the ranked list of retrieved documents from the IR 
stage as an initial testing set for the second stage. The 
anti_bow method has a relatively low F1 score of 40-50%. 
The graph shows that Ast_neural method has a fluctuating 
F1 score when considering larger documents and increase 
rapidly when testing around 30-40 documents. 

 

Figure 1: Precision of the two plagiarism detection 

methods 

 

Figure 2: Recall of the two plagiarism detection 

methods 

 
Figure 3: F1 score of the two plagiarism detection 

methods 
 

5. CONCLUSION 

In this study, an enhanced plagiarism detection method is 
proposed to produce more accurate result. Ast_neural 

Data 

Size 

Model F-Score Precision Recall 

100,000 Anti_bow 0.46 0.80 0.80 

AST_neural 
 

0.72 0.90 0.95 
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system introduces a new term to the term selection 
function in other to capture more user inputs. The method 
also employs a similarity evaluation model which captures 
deep semantic similarities between source code 
documents. The experimental results indicate the proposed 
Ast_neural system outperforms the other compared 
method in terms of precision, recall and f1 score. 
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