
Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5353

Enhanced Semantic Similarity Detection of
Program Code Using Siamese Neural Network

Hadiza Lawal Abba

Kofar kaura layout kastina, State, NIGERIA.
Email: hadizalawalabba@gmail.com

Abubakar Roko

Department of Computer Science, Usmanu Danfodiyo University, Sokoto, NIGERIA
Email: abroko@yahoo.com
Aminu B. Muhammad

Department of Computer Science, Usmanu Danfodiyo University, Sokoto, NIGERIA
Email: aminu.muhd@yahoo.com

Abdulgafar Usman

Ministry of Finance Economic and Development, Damaturu, Yobe State, NIGERIA
Email: abdulgafarusman80@gmail.com

Abba Almu

Department of Computer Science, Usmanu Danfodiyo University, Sokoto, NIGERIA
abba.almu@googlemail.com

---ABSTRACT---
Even though there are various source code plagiarism detection approaches, most of them are only concerned

with lexical similarities attack with an assumption that plagiarism is only conducted by students who are not

proficient in programming. However, plagiarism is often conducted not only due to student incapability but also

because of bad time management. Thus, semantic similarity attacks should be detected and evaluated. This

research proposes a source code semantic similarity detection approach that can detect most source code

similarities by representing the source code into an Abstract Syntax Tree (AST) and evaluating similarity using a

Siamese neural network. Since AST is a language-dependent feature, the SOCO dataset is selected which consists

of C++ program codes. Based on the evaluation, it can be concluded that our approach is more effective than most

of the existing systems for detecting source code plagiarism. The proposed strategy was implemented and an

experimental study based on the AI-SOCO dataset revealed that the proposed similarity measure achieved better

performance for the recommendation system in terms of precision, recall, and f1 score by 15%, 10%, and 22%

respectively in the 100,000 datasets. In the future, it is suggested that the system can be improved by detecting

inter-language source code similarity.

Keywords –Source Code, Lexical plagiarism, Semantic neural network.

--- ----------------------
Date of Submission: Jul 8, 2022 Date of Acceptance: Aug 27, 2022
--- --------------------------------

1. INTRODUCTION

Plagiarism of source-code is a growing problem due to

the growth of source-code repositories, and digital
documents found on the Internet. Therefore, identification
of source code re-use is an interesting topic from two
points of view. Firstly, the industries that produces
software are always looking for a way to protect their
developments, thus they usually search for any sign of
unauthorized use of their own blocks of source code.
Secondly, in the academic field, copying programs is now
a well-known habit among students. Such phenomena is
also motivated due to the vast number of open source
codes available on the internet today and some proposed
restructure approaches [26]. Probably every instructor of
a programming course has been concerned about possible
plagiarism in the program solutions turned in by students.
Consequently, source code re-use detection has become an
important research topic, motivating different groups of
researchers [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. To
build automatic systems to detect software plagiarism. For
example, [3] was able to detect source code plagiarism

using machine learning technique by transforming source
code into abstract syntax trees and then split up the tree
into functions, the tree for each function is considered a
document. This document collection is fed to an SVM
package using a kernel that operates on tree structured
data with a given author and a classifier was trained with
source code from two authors, and is then able to predict
which of the two authors plagiarized a new
function.[8]Also tried to detect source code plagiarism
based on Abstract Syntax Tree (AST) but the system was
not scalable due to lots of pairwise comparison of tree
structures. Therefore, [10] approached the problem of
scalability in an information retrieval perspective. While
the IR approach is efficient, it is essentially unsupervised
in nature. Therefore, to improve the effectiveness of their
work, they applied a supervised classifier (trained on
features extracted from sample plagiarized source code
pairs) on the top ranked retrieved documents. Their work
evaluated a set of three different types of features in order
to determine the similarity between code sources. The
features are: 1) lexical (character n-grams), 2) structural
(function names and parameter names and types), and 3)

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5354

stylistic (the number of lines of code, the number of white
spaces, the number of tabulations, the number of empty
lines, the number of defined functions, average word
length, the number of upper case letters, the number of
lower case letters, the number of underscores, vocabulary
size, and the lexical richness). This combination has
shown important aspects, with acceptable results, for
determining plagiarism between pairs of Java source
codes. However, the combination of these features is more
oriented in detecting plagiarism based on the lexical
similarities between documents.
After evaluating the stated features, the system compute
their similarity using the cosine similarity measure. This
cosine similarity algorithm calculates the similarity
between two text documents by counting all 3-grams
available in the documents and stores them in an M
dimensional vector, where M is the number of unique N-
grams found in the passage. Cosine similarity algorithm
uses these vectors to compare documents. Generally,
cosine similarity measure has better recall and precision
than most of other text similarity measures like Pearson
correlation coefficient (PCC), Jaccard or mean square
difference (MSD) [11]. However, this measure involves
simultaneous comparison of a single document to all other
documents and the vectorization step might depend on
whole document corpus storing the vectored form of each
document resulting to the storage of large amount of data.
Also, due to excessive comparison step by the cosine
similarity algorithm, the system has high complexity of O
(𝑛2). Cosine similarity has a very effective drawback; it
computes similarity based on frequency of words therefore
it is unable to detect semantic similarities between
documents; producing inaccurate results. However the
AST representation of the source code documents ignores
the existence of functions which a very essential user
input.
To address the above mentioned problems, in this study
we propose an enhanced plagiarism detection method
called AST_Neural System,where some additional terms
will be added as an AST node instead of a table [24],
because a tree captures aspect of source code that are
inherent to the programmer’s input more than the lexical
features of a particular programming language. The
system employs a model that captures both lexical and
semantic similarities between documents in order to
produce more accurate results.

2. RELATED WORKS
A. Alex. [1] Developed a source code plagiarism detection
system called MOSS. MOSS (measure of software
similarity) is based on a string matching algorithm that
functions by dividing programs into k-grams, where k is a
contiguous substring of length k. each k-gram is hashed
and MOSS selects a subset of these hash values as the
program’s fingerprints. Similarity is determined by the
number of fingerprints shared by the programs, i.e. the
more fingerprints they shared the more similar they are.
For each pair of source code fragments detected, the
results summary includes the number of tokens matched,
the number of lines matched and the percentage of source

code overlap between the detected file pairs. MOSS is a
wonderful system and a major advancement in the
plagiarism detection area. However, the system can only
detect the copy and paste plagiarism effectively and
produce much false retrieves when dealing with more
complicated plagiarism cases.
I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier. [2]
Presented a simple and practical methods for detecting
exact and near miss clones by using AST in program
source code. The method was based on hashing, firstly the
source code was parsed and an AST was produced for it
and then three main algorithms were applied to find
clones. The first algorithm (basic algorithm) was to detect
sub tree clones, the second (sequence detection algorithm)
was to detect variable size sequence of sub-tree clones and
the third (last algorithm) looks for more complex near
miss clones by attempting to generalize combinations of
other clones. For the algorithms to find sub tree clones to
function, every sub tree is compared to every other sub
tree for equality. The method is straight forward to
implement but the algorithms used performs better on a
dataflow graph than trees. This may likely results to high
number of false positive retrieves when detecting near
miss clones. B. N. Pellin [3] presented a technique for
detecting authorship of a source code. He used machine
learning technique to accomplish the task by transforming
source code into abstract syntax trees and then split up the
tree into function. The tree for each function is considered
a document, with a given author. This collection is fed to
an SVM package using a kernel that operates on tree
structured data. The classifier is trained with source code
from two authors, and is then able to prediction which of
the two authors wrote a new function. The method was
able to achieve between 67% and 88% classification
accuracy over the set of programs examined. However, the
method is highly vulnerable to manipulation of the source
code, an advanced source code translator or obfuscator
could destroy the patterns that their classifier uses to
identify authors and also it requires that you know the set
of possible authors. J. Son, S. Park, and S. Park [5]
proposed a plagiarism detection system that uses parse tree
kernels. The role of the parse tree kernels in the system is
to handle the structural information within source
programs and to measure the similarity between parse
trees extracted. The system performs 100% accurate for a
simple attack and it is not affected by structural attack.
The system is independent of programming languages.
Due to the structure of copied programs which includes a
lot of abundant garbage, a lot of plagiarism detection
systems fail in detecting plagiarism. However, the system
is liable to present false positive outcomes because the
similarity values of the parse tree kernels increases too fast
to handle and the value of the kernels between two
different trees is typically much smaller than the value
between same trees. C. Liu, C. Chen, J. Han and P. S. Yu.
[6] Developed a new software plagiarism detection tool
called GPlag by mining program dependence graphs
(PDGs). GPlag is a PDG-based scalable detection tool.
The tool works using a PDG-based plagiarism detection
tool, it takes an original program and a suspected

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5355

plagiarized program as input. And outputs a set of PDG
pairs that are regarded as involving plagiarism.
Experiments showed that GPlag is both effective and
efficient. However people need to examine the returned
PDG pairs to confirm plagiarism and/or eliminate false
positives, which makes the tool plagiarism manual. D.
Zou, W. Long, and Z. Ling.[4] described a cluster-based
plagiarism detection method to detect plagiarism in the
network engineering related courses. The method consist
of 3 steps: the first step is the preselect step, which is to
find a small list of candidate documents from the source
document set which may contain the plagiarized content.
The next step is to compare the suspicious document with
each candidate document to get the copied part from the
suspicious document, this step is called locating. The last
step is called post processing, which is to discard some
fragments without plagiarism from the end result. The
method was tested on both the training and testing set for
PAN-09 and proved to be effective, but due to its multiple
operating steps, it consumes much execution time.
Therefore, the method is said to have very high big O
complexity. E. Flores, A. Barro ´n-Ceden ˜o, P. Rosso, and
L. Moreno. [11] Proposed a simple approach to the
detection of cross-language source code re-use. Their
experiment was based on character 3-grams comparison
and where able to achieve acceptable result when
comments were ignored. However, due to the massive
number of similar keywords in a programming language,
the character n-grams results to an over estimation of
lexical similarities producing inaccurate results.
To detect plagiarism, most existing commercial software
adopt methods like sentence matching or keyword
matching to detect plagiarism; such methods are learnt to
be ineffective. Therefore, [7] introduced a detection
method to solve the “copy paste” and “paraphrasing” type
plagiarisms. He proposed the cosine metric factor to
illustrate the relevance among documents. Data was first
preprocessed by removing stop words to eliminate the
relevance among unwanted words. The processed data was
later stemmed to get the original form of words in the
documents. The cosine metric factor was then proposed to
illustrate the relevance among documents. However, the
method can only work when the correct source is
provided, improper edition of the reference makes the
method inefficient. Z. Duric, and D. Gasevic. [8] Designed
and developed a source code similarity detection system
(SCSDS) in order to solve the problem of structural
modification source code which is a confusing factor for
most similarity detection systems, making them produce
inefficient results. The system consist of two parts,
SCSDS core and SCSDS frontend. The first part SCSDS
core consist of four modules, the preprocessing module;
which perform preprocessing on the source document and
forward its output to the tokenized module. The tokenized
module performs the tokenization, which is a similarity
determination between file documents, the results of the
module is sent to the exclusion module. The exclusion
module removes an “exclusion token sequence” from the
list of tokens obtained from the tokenization module. The
resulting list of tokens will be forwarded to the comparator

module. The comparator module is responsible for
similarity measurement using RKR-GST comparator
(which implements the RKR-GST algorithm) and the
Winnowing comparator (which implements the
Winnowing algorithm). The second part, that’s the SCSDS
frontend is responsible for selection of source code files
for comparison and displaying of similarity measurement
results. The system was tested on set of java source files.
It also showed promising results in terms of performance
compared to JPlag. However, SCSDS has no
preprocessing module for other programming languages
except Java, and an efficient and easy accessible user
interface is critical to wide adoption.
L. Zhang, D. Liu, Y. Li, and M. Zhong. [9] Developed a
code copy detection system based on AST. The system
converted the code to AST after undergoing some
preprocessing stages and formatting, it was able to detect
plagiarism by calculating similarity for the AST. Due to
lots of pairwise comparison, the system cannot process
large dataset and have relatively high complexity, also it
can only perform on C programming language. S.
Narayanan and S. Simi. [12] Developed an algorithm
based on fingerprint approach to identify the reuse of
source code in direct and indirect ways. The system used
multiple phases to detect plagiarism effectively. It takes
source code from the database as input, and it will pass
through the code restructuring, tokenization, complexity
analyzing and the similarity computation phases. It will
outputs the similarity score after passing through the
presented stages. The files will be compared to figure out
the similarities and the plagiarism detection reliability
measure is based on precision and recall. The system was
tested using large datasets in C, C++, java, and c#
programming languages. However, the system was only
limited to the stated programming languages and
ineffective in inter language similarity.
Another common approach to source code plagiarism
detection is to determine the fingerprint of a source code
document by making use of the word n-grams. R.
Marinescu. [13] Proposed a system for code refactoring,
representing different source code segments with hashes
which are compared using the Winnowing algorithm. The
system was able to detect any proof of cheating and it
works against different level of similarity, low level
similarity till high level ones. However, this approach
does not consider important characteristics inherent to
source code such as keywords, identifiers names, number
of lines, number of terms per line, number of hapaxes
etc. S. Ion and I. Bogdan. [14] Proposed a source code
plagiarism detection method. The method was based on
ontologies created using protégé editor. They build
ontologies for each source code that is suspected of
plagiarism based on the vocabulary and taxonomy of a
programming language source code using protégé (a free
open source ontology editor). This process is done
automatically using a crawler. The crawler will read the
read the code line by line from top to bottom and will
create the specific individuals for each line of code and
the individual ontologies created from the presented
process will be compared to see the plagiarism degree.

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5356

The method is suitable for complex software plagiarism
detection but have a little drawback, the system is not
fully automatic. T. Ohmann and I. Rahal. [15] Presented
an approach called program it yourself (PIY) which
utilized K-gram-based pairwise document comparison
and PAM clustering. The system achieves high plagiarism
detection accuracy with far lower runtime. However, the
system can only process 10,000 documents and below
which makes the system highly inefficient. J. Zhao, K.
Xia, Y. Fu, and B. Cui. [16]Proposed an effective
plagiarism detection algorithm based on AST. The
algorithm compared code based on AST, it raised the
efficiency of comparison by transforming the storage
format of the syntax tree twice and converting the tree-
like structure in a linear list and regrouping the sub tree
according to the number of sub-nodes. The algorithm also
reduce mistakes by calculating the hash value of
operations (subtraction, division, modulo arithmetic, etc.).
It was concluded that the system; code comparison
algorithm (AST-CC) can perform more efficiently than
AST because of its storage form. Therefore, just like AST
the system can process large data set but due to lots of
pairwise comparison, the system possess relatively high
complexity. N. More, A. A. Bhootra and C. A. Patel. [17]
Showed a method to detect plagiarism in Java source
code. Firstly, the files were uploaded and comments were
removed at the initial step. A token file was created for
each uploaded source code. The token files were
compared, the result of each comparison is a value called
percent match. If the percent match of a pair of token files
is larger than the minimum value, then the comparison
pair will be assumed to be plagiarized. This is done to
every file in the submitted folder. The method was tested
on a set of students’ assignment and was proved to be
effective. However, the method can only work on small
collection of dataset and can only process Java files. N.
Shah, S. Modha, and d. Dave. [18] Proposed plagiarism
detection methods which analyze source code using 3
different representations. The method represent code in 3
views; lexical, structural and stylistic. The method tries to
find similarities based on these 3 representations. Manual
threshold of the two codes are being computed for each
view. The approach was concluded to give sufficient
results by achieving the best precision at 97.87% and
recall at 84.52%. However, only 3 structures were taking
into consideration and the structural similarity is of low
quality. Also, due to lots of pairwise comparison, the
method cannot process large dataset and has high
complexity. O. Karnalim. [19] Proposed a source code
plagiarism detection which can detect plagiarism at any
level by utilizing low-level instructions instead of source
code tokens. The author selected java as target
programming language and bytecode as its low-level
instruction. It was evaluated that the approach is more
effective to detect most plagiarism attack types than raw
source code approach. However, the method was unable
to handle plagiarism attacks in object-oriented
programming. O. Karnalim. [20] Proposed an expansion
of the Karnalim’s approach for plagiarism detection based
on low-level tokens, by incorporating three contributions,

which are: flow-based token weighting which reduced the
number of false-positive results, an argument removal
heuristic that generates more accurate linearized method
content and the invoked method removal that fastened the
processing time. The approach was proved to be partially
effective to handle plagiarism attacks in practical
environment, however it is unable to handle source code
plagiarism in object oriented environment. M. Duracik, E.
Kirsak, and P. Hrkut. [21] Developed a system which
focuses on representing source code using AST in order
to detect plagiarism. The system represents source code
using hashing and characteristics vector. They carried out
an experiment based on these two approaches and tried to
compute the similarity of classes as well as methods in a
source code dataset; which consists of 59 student
submissions. They tried to minimize absolute similarity
comparison (addressing the weakness of the MOSS
algorithm) but their system was unable to achieve
scalability and also some false positive matches were
generated at lower values. However, the system was able
to prove that generating vectors using AST is the best
appropriate way of representing source code M. Duracik,
E. Kirsak, and P. Hrkut. [22] Developed a new scalable
system to detect plagiarism in a huge number of source
files by applying an incremental clustering approach in
order to achieve modularity and scalability. The system
transformed the source code into an AST, then
characteristics vectors were generated from the tree.
These vectors are clustered by the system using
incremental k-means algorithm and inserted into a
database. Similar vectors are then searched in the
database and are post-processed. A final plagiarism report
that contains a similarity score and parts of matched
source code snippets was generated. The system can
successfully replace the MOSS system because of its
scalability and ability to search for plagiarism on a much
larger scale. However, adding data to the database and
maintaining consistency by re-clustering is time
consuming operation and also the algorithm speed was
not evaluated.
O. Karnalim. [23] Extended the karnalinm’s work, a low-
level approach for detecting java source code plagiarism
by incorporating abstract method linearization. The
method was to enhance the accuracy of low-level
approach in term of detecting plagiarism in object-oriented
environment. It incorporated linearization to predict the
content of abstract method by concatenating all method
contents from its respective implementers. The method
produced less false positive retrieves and provides more
accurate results since it only considered semantic
preserving token. Despite its accuracy, the method suffers
a drawback. It cannot detect several short similar pairs
which can only be detected through standard lexical token
approach. D. Ganguly, G. J. F. Jones, A. Ramı´rez-de-la-
Cruz, G. Ramı ´rez-de-la-Rosa, and E. Villatoro-Tello.
[10] Proposed a scalable source code plagiarism method
using information retrieval approach. They perform their
experiment in stages, for the first stage they retrieve a
ranked list of documents using the AST representation of
source code. At the second stage, they employ a

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5357

supervised approach to perform a more fined grained
analysis over the set of retrieved documents from the first
stage. Their work was able to achieve scalability but due
to the combination of features used at the supervised stage,
the system was unable to produce accurate result and also
the similarity measure can only detect lexical similarities.
The above literature review presented in this chapter
describes different source code plagiarism detection
systems. This system works based on different methods
and approaches. The strengths and weaknesses of the
systems were also highlighted, up to the last review. The
methods were able to detect plagiarism thou mostly on a
small dataset and they are likely to produce false positive
results. A research gap was described which will be
address in this research.

3. MATERIALS AND METHODS

Ast_neural system
To address the above problem, the following system is
proposed.This section describes the proposed plagiarism
detection method that improved the method described in
4.1the system presents an improved approach of the
previous version of anti_bow system.
The system performs in two stages, the IR stage and the
similarity evaluation stage. At the IR stage, the documents
are represented as an AST and a pseudo-query was
extracted from a preset number of terms from each field of
a document. The selected fields are:
i. Classes: names of java were considered.

ii. Method calls: Method names with actual
parameter names and types.

iii. String literals: Values of the strings

iv. Method definitions: Names of methods and
formal parameter names and types

v. Package imports: names of imported packages
vi. Arrays: Constant names of array and dimension

vii. Assignment statements: Variable names and
types

viii. Comment: Text inside comments

ix. Functions: Function definitions and number of
function calls

The following are the specific nodes of the AST that was
used, not whole source code documents is used as a
pseudo-query.
The field language model (LM) was used as the term
selection function to obtain representative terms from each
field. Firstly, the approach introduces a new field to the
AST. The addition of a field in the AST representation can
guarantee an improvement at the retrieval stage. After the
first k terms are retrieved instead of employing a classifier
for classification, this approach employs the Siamese
Neural Model (SNM) to capture deep semantic similarities
from the retrieved documents from the IR stage. The first
step in an SNM is the word embedding and word
frequency. The source code will be split into variables,
function name, operators, reserved words, constant values
and others. Each of the word is mapped to its
corresponding vector with a frequency. Then the second

step is the source code representation, the input are code
matrices gotten from the previous step. And the last step,
the similarity feature is calculated based on hidden
features of code snippets.

3.1 WORD EMBEDDING

Word2Vec is a widely word embedding model applied in
NLP. When using word to vectors to represent code
snippet, the weight of all word vectors are equally. But,
we all know the contribution of each word in code is
different. For source code snippets, the weight should
reflect the structure of source code. In order to improve
the effect of code presentation, the words of control
structure should have different coefficients and multiplied
by the word frequency of it. So, the vector of code snippet
is represented as 𝑈 = {𝑓1𝑤1, … , 𝑓𝑖𝑤𝑖 , … , 𝑓𝑚𝑤𝑚}, where 𝑤𝑖 ∈ 𝑊 is the 𝑖𝑡ℎ
row of embedding matrix W, {𝑓1, 𝑓2, … , 𝑓𝑚}is Tf-Idf value
of each word, m is the number of words in code snippets.

3.2 CODE REPRESENTATION

This in the previous stage, we got the embedded matrix U,
at this stage both the semantic and the structural materials
for the input source code will be represented. This stage is
the CNN model, it contains five layers: input layer,
convolution layer, pooling layer, connection layer and
output layer.
Input Layer: A pair of pre-trained word embedding
matrix𝑈𝐴, 𝑈𝐵 are taking as input. 𝑈𝐴 ∈ 𝑅𝑁1×𝑑, 𝑈𝐵 ∈𝑅𝑁2×𝑑 , where𝑁1, 𝑁2is the number of words respectively
in source code A and B, d is the vector dimension. The
two code snippets are padded with 0 to have the same
length 𝑁 = 𝑚𝑎𝑥{𝑁1, 𝑁2}. After filling with 0, the
initialized matrix 𝑈 ∈ 𝑅𝑁×𝑑.
Convolution Layer: Each kernel 𝐾 ∈ 𝑅𝑠×𝑑 does
convolution operation in the word sequence{𝑣1, 𝑣2, … , 𝑣𝑛}. 𝑝𝑖 = 𝑈𝑖 ∗ 𝐾 (4.1)
Here, ∗ is convolution operator,𝑈𝑖 = {𝑈𝑖 , 𝑈𝑖+1, … , 𝑈𝑖+𝑠−1},
that is the embedding matrix of word
sequence{𝑣𝑖 , 𝑣𝑖+1 , … , 𝑣𝑖+𝑠−1},1 ≤ 𝑖 ≤ 𝑁 − 𝑆 + 1. 𝑝𝑖Is a
real number, because the dimensions of kernel and word
vector are same. 𝑝𝑖 = {𝑝𝑖 , 𝑝𝑖+1, … , 𝑝𝑖+𝑠−1} ∈ 𝑅𝑑1, where 𝑑1=𝑁 − 𝑠 + 1.

Pooling Layer: Pooling (including min, max, average
pooling) is commonly used to extract robust features from
convolution, to reduce its dimension. A convolution layer
transforms an input feature map U with d columns into a
new feature map P with one column. The maximum is
gotten after each max-pooling over each vector P, which
can be expressed as: 𝑥𝑖 = 𝑚𝑎𝑥{𝑝𝑖} 𝑖 = 1,2, … , 𝑁 (4.2)
Where N is the filter number that was set in convolution
layer.

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5358

Connection Layer: In connection layer, each 𝑥𝑖 is
concatenated which was gotten from pooling layer, into a
vector for source code A and B. 𝑋 = 𝑥1 ⊕ 𝑥2, . . . ,⊕ 𝑥𝑀 (4.3)

Where ⊕ is the operation that merges two vectors into a
long vector, X is a new feature map for source code.

E.g.𝑎 ⊕ 𝑏

 Using Pythagoras theorem 𝑐2 = 𝑎2 + 𝑏2 𝑅2 = 𝑎2 + 𝑏2 𝑅 = √𝑎2 + 𝑏2
Where R is the resolution of the concatenated vector.
Output Layer: this layer computes the similarity score.
The Layer targets at calculating the similarity score of
each source code pair, which can be used to rank
candidate code snippets to find similar ones for any source
code. The similarity score of the input pair is computed by
using cosine function on new feature vectors X which
leverage their semantic representations and structure
representations. 𝑠𝑖𝑚(𝑋𝐴, 𝑋𝐵) = 𝑋𝐴.𝑋𝐵||𝑋𝐴||2||𝑋𝐵||2 (4.4)

Where · is inner product of vector 𝑋𝐴 and𝑋𝐵, where 𝑋𝐴 = ||𝑋𝐴||2 and 𝑋𝐵||2 is their 2-norm. Those code
snippets with the largest similarity score will be returned
as similar codes of the given one.

Algorithm 1: IR stage
Input: Dataset Consisting Of Documents
(𝐷1,𝐷2, … … … . . 𝐷𝑁)
Output: suspected documents

1. WHILE AST representation // represent source
code into an AST

2. For each source code document do

3. 𝐿𝑀(𝑡, 𝑓, 𝑑) = 𝜆 𝑡𝑓(𝑡,𝑓,𝑑)𝑙𝑒𝑛(𝑓,𝑑) + (1 − 𝜆) 𝑐𝑓(𝑡)𝑐𝑠 //term

selection function

4. CONSTRUCT a Pseudo-query //the suspicious
document is considered a query

5. RETRIEVE documents //retrieve a ranked
list of documents from the dataset

6. Query_Search(Dataset) //perform a grid search
of documents from the dataset

7. Return suspected documents
Algorithm 2: Similarity Evaluation stage
Input: Suspected Documents
Output: Plagiarized documents

1. For all suspected documents do
2. CONVERT word to vector
3. 𝑈 = {𝑓1. 𝑤1 … … 𝑓𝑖 . 𝑤𝑖 … … 𝑓𝑚. 𝑤𝑚}
4. Represent semantic and structural materials

5. 𝑈𝐴, 𝑈𝐵 = INPUT //𝑈𝐴, 𝑈𝐵 are pre-trained
embedding matrix

6. 𝑈𝐴 ∈ 𝑅𝑁1×𝑑, 𝑈𝐵 ∈ 𝑅𝑁2×𝑑 //𝑁1, 𝑁2 are number
of words in source code A and B

7. For each Kernel in the vector {𝑣1, 𝑣2 … … . 𝑣𝑛}
do

8. 𝑝𝑖 = 𝑈𝑖 ∗ 𝐾, 𝑈𝑖 = {𝑈𝑖 , 𝑈𝑖+1 … … 𝑈𝑖+𝑠−1}
9. EXTRACT robust features
10. 𝑥𝑖 = 𝑚𝑎𝑥{𝑝𝑖} 𝑖 = 1,2, … … 𝑁
11. CONCATENATE each 𝑥𝑖 in a vector //for

source code A and B
12. 𝑋 = 𝑥1 ⊕ 𝑥2 , . . ., ⊕ 𝑥𝑀
13. COMPUTE similarity

14. 𝑠𝑖𝑚(𝑋𝐴, 𝑋𝐵) = 𝑋𝐴.𝑋𝐵||𝑋𝐴||2||𝑋𝐵||2

15. IF 𝑠𝑖𝑚(𝑋𝐴, 𝑋𝐵) ≠ 0
16. Return plagiarized document
17. Else

Return none plagiarized

4. EXPERIMENTS AND RESULTS

This section discusses the experimental setup to evaluate
our proposed AST_neural system. The effectiveness of
the system was evaluated using F-Score, Precision, and
Recall, evaluation metrics. Precision, Recall and F-Score
are used because they are of probabilistic setting which
allow us to obtain more accurate values rather than
estimates. These combination of metrics is also suitable
on different source codes from the same dataset where
competing results are obtained on the same data.

4.1 Experimental setup
In this study, python 3.9 with pandas, numpy, matplotlib,
SCIKITLearn libraries were used for the implementation
and evaluation of the proposed system. The AST for each
Java source code was obtained with the help of ‘‘Java
parser’’ which is an open source syntax parser for Java
programs. Information extracted from the AST nodes was
then used to construct the field representation for every
document in the index. We indexed the document set
using Lucene (version 4.6). A HP Stream 11 was used for
the experiment over a Linux operating system.

4.2 Data set

AI-SOCO dataset were considered which contain a
considerable amount of programs. The AI-SOCO dataset
is essential to detection of undesirable deception of
others’ content misuse or exposing the owners of some
anonymous hurtful content. This is done by revealing the
author of that content. This facilitates solving issues
related to cheating in academic, work and open source
environments. Also, it can be helpful in detecting the
authors of malware software’s over the world. The dataset
is composed of source codes collected from the open
submissions in the Code forcesonline judge. A code force
is an online judge for hosting competitive programming
contests such that each contest consists of multiple
problems to be solved by the participants. A Code forces
participant can solve a problem by writing a solution for it
using any of the available programming languages on the

http://www.google.com/url?q=http%3A%2F%2Fcodeforces.com%2F&sa=D&sntz=1&usg=AOvVaw15cjVBh93cmaeyXBceTJCn

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5359

website, and then submitting the solution through the
website. The solution's result can be correct (accepted) or
incorrect (wrong answer, time limit exceeded, etc.). The
dataset consists of 100 source code documents collected
from 1,000 users. So the total of source codes documents
is 100,000. For each user, all collected source codes are
from unique problems. The issue of scalability has been
tackled. This can be obtained at the github repository. We
decide to use AI-SOCO dataset because all collected
source codes are dataset collection are correct, bug-free
and compile-ready. For each user submission, all
collected source codes are from unique problems.

4.3 Result and Discussion

4.3.1 Results

This section presents the results of the experiments for the
evaluation of the enhanced plagiarism detection method
compared to anti_BoW system. Several experiments were
conducted to detect plagiarism. The results obtained are
presented as follows:
The Table 1: bellow shows the overall result of our
proposed schemes.

Table 1: Overall results

4.3.2 Discussion
Fig. 2, 3 and 4 demonstrate the precision, recall and f1
score of the Ast_neural system as compared to anti_bag of
words detection method. The figures show that Ast_neural
system has a higher precision and recall values compared
to the other plagiarism detection method. The reason for
this performance is the improvement at the IR stage and
also the replacement of the classification phase with the
Siamese neural network which helps to capture the
semantic similarities available.
In Fig. 2, it shows the precision values measured
individually for both methods with the intention to observe
the new method’s effectiveness. The results were obtained
when testing the first 100 documents retrieved from the IR
stage. It was observed that the previous method has an
increasing precision from the first 40 documents and it
became constant once the documents are more than 40,
while the enhanced method its precision increased once
the number of number of documents increases. This shows
that the new method shows more effective result when
testing with a large dataset.
The second figure (Fig. 3) shows the recall of the two
methods. From the graph, it shows that Ast_neural method
outperformed the anti_bow method with 10%. The
anti_bow method considered 20 documents and above to
measure recall while Ast_neural method considered even
lesser amount of documents. The two methods have an
equal recall when considering 20 documents that is

because both methods consider a number of 20 documents
from the ranked list of retrieved documents from the IR
stage as an initial testing set for the second stage. The
anti_bow method has a relatively low F1 score of 40-50%.
The graph shows that Ast_neural method has a fluctuating
F1 score when considering larger documents and increase
rapidly when testing around 30-40 documents.

Figure 1: Precision of the two plagiarism detection

methods

Figure 2: Recall of the two plagiarism detection

methods

Figure 3: F1 score of the two plagiarism detection

methods

5. CONCLUSION

In this study, an enhanced plagiarism detection method is
proposed to produce more accurate result. Ast_neural

Data

Size

Model F-Score Precision Recall

100,000 Anti_bow 0.46 0.80 0.80

AST_neural

0.72 0.90 0.95

Int. J. Advanced Networking and Applications
Volume: 14 Issue: 02 Pages: 5353-5360(2022) ISSN: 0975-0290

5360

system introduces a new term to the term selection
function in other to capture more user inputs. The method
also employs a similarity evaluation model which captures
deep semantic similarities between source code
documents. The experimental results indicate the proposed
Ast_neural system outperforms the other compared
method in terms of precision, recall and f1 score.

REFERENCES

[1] A. Alex. MOSS (Measure of software similarity)
plagiarism detection system 1994. Retrieved from
http:/www.cs.berkely.edu/~moss/. University of
Berkely, CA.

[2] I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier.
Clone detection using abstract syntax trees. IEEE.

Published in the Proceedings of International

conference on software maintenance (ICSM’98):

1998.pp 368-377.
[3] B. N. Pellin. Using classification techniques to

determine source code authorship. White paper:

department of computer science, university of

Wisconsin. 2000.
[4] D. Zou, W. Long, and Z. Ling. A cluster-based

plagiarism detection method - Lab report for PAN at
CLEF In Proceedings of the 4

th
 Workshop on

Uncovering Plagiarism, Authorship, and Social

Software Misuse 2010.
[5] J. Son, S. Park, and S. Park. Program Plagiarism

Detection Using Parse Tree Kernels. PRICAI’06

Proceedings of the 9
th

 Pacific Rim international

conference on artificial intelligence: 2006. pp 1000–
1004.

[6] C. Liu, C. Chen, J. Han and P. S. Yu. GPLAG:
Detection of Software Plagiarism by Program
Dependence Graph Analysis. In Proceedings of the

12
th

 ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining: 2006. pp 872-
881.

[7] S. Harihan. Automatic Plagiarism Detection Using
Similarity Analysis. The International Arab Journal of

Information Technology: Vol. 9, issue 4. 2012.
[8] Z. Duric, and D. Gasevic. A Source Code Similarity

System for Plagiarism Detection. The Computer

Journal: Vol. 56, issue 1, 2012. pp 70-86.
[9] L. Zhang, D. Liu, Y. Li, and M. Zhong. AST-Based

Plagiarism Detection Method. In: Wang Y., Zhang X.

(eds) Internet of Things. Communications in Computer

and Information Science. Springer, Berlin, Heidelberg,
Vol. 312. 2012.

[10] D. Ganguly, G. J. F. Jones, A. Ramı´rez-de-la-Cruz, G.
Ramı ´rez-de-la-Rosa, and E. Villatoro-Tello.
Retrieving and classifying instances of source code
plagiarism: Information Retrieval journal: 2017. pp 1-
23.

[11] E. Flores, A. Barro ´n-Ceden ˜o, P. Rosso, and L.
Moreno. Towards the detection of cross-language
source code reuse. In Proceedings of the 16th

international conference on applications of natural

language to information systems: 2011. pp. 250–253.

[12] S. Narayanan and S. Simi. Source Code Plagiarism
Detection and Performance Analysis Using Fingerprint
Based Distance Measure Method. In Proceedings of

7th International Conference on Computer Science

Education ICCSE ’12. IEEE: pp 1065-1068.
[13] R. Marinescu. Accessing Technical Debt by

Identifying Design Flaws in Software Systems. IBM

Journal of Research and Development: Vol. 56(5),
2012. pp 1-9.

[14] S. Ion and I. Bogdan. Source Code Plagiarism
Detection Method Using Protégé Built Ontologies:
Informatics EconomicsJournal: Vol. 17, 2013. pp 75-
86.

[15] T. Ohmann and I. Rahal. Efficient clustering-based
source code plagiarism detection using PIY. Journal of
Knowledge and Information Systems: vol. 43, 2014. pp
445-447.

[16] J. Zhao, K. Xia, Y. Fu, and B. Cui. An AST-Based
Code Plagiarism Detection Algorithm: 10th

International Conference on Broadband and Wireless

Computing, Communication and Application. 2015.
[17] N. More, A. A. Bhootra and C. A. Patel. Plagiarism

Detection in Source Code. IJIRST –International

Journal for Innovative Research in Science &

Technology: Volume 1, Issue 10 | March 2015 ISSN
(online): 2349-6010, 2015. pp 109-112.

[18] N. Shah, S. Modha, and d. Dave. Differential Weight
Based Hybrid Approach to Detect Software Plagiarism.
In Proceedings of International Conference on ICT for

Sustainable Development: Vol. 409, 2016. pp 645-653.
[19] O. Karnalim. Detecting Source Code Plagiarism on

Introductory Programming Course Assignments Using
a Bytecode Approach. The 10th International

Conference on Information, Communication

Technology and System (ICTS), Surabaya, Indonesia:

IEEE, 2016. pp 63-68.
[20] O. Karnalim. A Low-Level Structure-based Approach

for Detecting Source Code Plagiarism. IAENG

International Journal of Computer Science: volume
44, 2017. pp 4.

[21] M. Duracik, E. Kirsak, and P. Hrkut. Source Code
Representations for Plagiarism Detection. Springer

International Publishing AG, part of Springer Nature:

CCIS 870, 2018. pp 61–69.
[22] M. Duracik, E. Kirsak, and P. Hrkut. Scalable Source

Code Plagiarism Detection Using Source Code
Vectors Clustering. IEEE Journal: 2018. pp 7-18

[23] O. Karnalim. Source Code Plagiarism Detection in
Academia with Information Retrieval: Dataset and the
Observation. Jornal of Informatics in Education: Vol
18(2), 2019. pp 321-344.

[24] Dr. R, Kulkarni1 and K., Apana. A Novel Approach

to Restructure the Input Java Program. Journal of

advanced networking and applications: Volume: 12

Issue: 04 Pages: 4621-4626(2021).

[25] R. Kulkarni and P., Pani. Abstraction of UML Class

Diagram from the Input Java Program. Journal of

advanced networking and applications: Volume: 12

Issue: 04 Pages: 4644-4649(2021).

	1. introduction
	2. RELATED WORKS
	3. MATERIALS AND METHODS
	3.1 Word embedding
	3.2 Code representation
	4. EXPERIMENTS AND RESULTS
	5. Conclusion
	References

