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In this paper, we aim to introduce a survey on the applications of deep learning for breast cancer detection and 

diagnosis to provide an overview of the progress in this field. In the survey, we firstly provide an overview on deep 

learning and the popular architectures used for breast cancer detection and diagnosis. Especially we present four 

popular deep learning architectures, including convolutional neural networks, fully convolutional networks, auto 

encoders, and deep belief networks in the survey. Secondly, we provide a survey on the studies exploiting deep 
learning for breast cancer detection and diagnosis. 
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I. INTRODUCTION  

Breast cancer is one of the most common cancers 

diagnosed in women around the world and it is a main 
cause of fatality among women. In low-income and 
middle-income countries the mortality rates are relatively 
high compared to developed countries. According to the 
World Health Organization’s International Agency for 
Research on Cancer 2022 report, more than 1.7 million 
women in 2022 were diagnosed with breast cancer world- 
wide. This is considered around 11.9% of all cancers 
diagnosed in the same year with 522000 death cases 
reported. It is also expected that by 2025 there will be 19.3 
million new cancer cases [1, 2]. Moreover, in developing 
countries like Egypt, the dense population and the 
patients’ ignorance to the disease symptoms and seeking 
medical consultation either when it’s too late or extremely 
critical leads to higher mortality. Also, shortage of medical 
specialists and experts in rural areas adds up to the 
problem of early and accurate diagnosis of breast cancer 
causing higher mortality rate. 
Using information technology and medical data to build 
medical support systems which can mimic the doctor’s 
reasoning and conclude the symptoms is one solution to 
breast cancer early detection and hence increase the 
treatment chances and decrease mortality rate. Medical 
image examination is the most effective method for 
diagnosis of breast cancer. Different medical imaging 
modalities are used for diagnosis such as: digital 
mammogram (DM), ultrasound (US), magnetic resonance 
imaging (MRI), microscopic (histological) images, and 
Infrared thermography (IRT). As a means to assist 
radiologists and physicians in identifying abnormalities, 
these modalities produce images which have reduced 
mortality rates by 30–70% [3]. Images interpretation is 
operator-dependent which requires expertise, thus using 
information technology is a necessity to accelerate and 
enhance the accuracy of the diagnosis providing a second 
opinion to the expertise [4]. Using some computerized 
features extraction and classification algorithms 

formulated as computer-aided diagnosis/detection (CAD) 
can be a great helpful tool for physicians and experts in 
detecting abnormalities. Many effort s were made to 
develop CAD systems which are based on the advances of 
digital image processing, pattern recognition and artificial 
intelligence. The CAD systems are expected to overcome 
the operator dependency, increase diagnosis rate, and 
reduce the expense of medical complementary modalities 
[5–7]. And thus it may help to reduce false positive 
reactions that may lead to futile treatment and 
psychological, physical, and economic costs that come 
with a false positive. And it also may reduce false negative 
readings that may cause omission of treatment that could 
result in remissions. It is reported that the detection 
sensitivity without CAD is around 80% and with it 
sensitivity reaches 90% [8]. In 2011, Sadaf et al. [9] 
studied the performance of full-field dig- ital 
mammography (FFDM) augmented with CAD tools. The 
study showed that CAD combined with mammography 
presented 100% sensitivity in identifying cancers 
manifesting as micro-calcifications and 86% sensitivity for 
other mammographic appearances of cancer. Accordingly, 
CAD has become the most active field of research in 
medical imaging to improve the precision of a diagnosis 
[10–12]. Computer aided detection is concerned with 
using a computer output to determine the location of 
suspect lesions. Afterwards, the radiologists are the one 
who is in charge of the characterization and diagnosis of 
the abnormalities as well as the patient management. 
Computer aided diagnosis on the other hand takes the 
detection done by a human or a computer and gives an 
output that determines the characterization of the lesion 
and gives the probability of malignancy and any 
abnormalities [13]. 
There have been numerous studies in the literature 
investigating the use of CAD systems for breast cancer 
detection and diagnosis. These studies have used various 
imaging modalities and machine learning algorithms, 
some of which have even gone through clinical workflow 
for feasibility tests [14, 15]. However, the success of these 
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studies has been limited due to high phenotypic variations 
in tumors, large number of false positives, and poor 
diagnosis rates [16]. For these reasons, many studies were 
dedicated to improving these systems. Lately, research in 
this field is moving towards a more favorable direction 
due to exciting new advances in machine learning, 
specifically “deep learning” [17, 18]. 
Deep learning, i.e. as deep neural networks, has been a 
rapidly growing subfield of machine learning. The main 
reasons behind this breakthrough over the past few years 
are increased availability of more advanced computer 
algorithms that are inspired by human intelligence, 
updates on contemporary hardware technology for 
processing and storing large data sets, and an increased 
availability of massive amounts of labeled data to train 
these algorithms with better precision. This revolutionary 
and cutting-edge approach to computer vision has had a 
broad spectrum of applications including graphics, 
genetics, medicine, the automotive industry, the Internet, 
and ultimately, radiology and imaging sciences [19-23]. 
In AI technology, deep learning methods have multiple 
levels of representation learning which use raw data and 
discover the essential representations for detection or 
classification [24]. These inherent representations and 
patterns are obtained through a hierarchical framework 
which is able to put features extracted from a low level 
(starting with raw data) and high level abstracts together 
using a non-linear approach. Such networks are able to 
improve themselves according to the input content 
variation and optimize the relationship between inputs and 
outputs via an iterative training process [25]. At the same 
time as the deep learning concepts were developed, a step-
change in processing power through high performance 
GPUs 15 and open source frameworks/libraries developed 
on CUDA 16 (CUDA (2017)) or OpenCL 17 (OpenCL 
(2017)) platforms have made significant progress for the 
implementation of deep learning based methods. These 
open source frameworks and libraries provide the chance 
for optimized implementation of convolutions and other 
related functions. In addition, they facilitate the ability to 
perform a high number of computations at relatively low 
costs through their massive parallel architectures. 
This paper presents an overview of different deep learning 
based approaches used for mammography and breast 
histology and proposes a bridge between these two fields 
employing deep learning concepts. We have focused on 
mammography, since this is the most common modality 
used in breast screening, and H&E stained histology, since 
it is considered as the gold standard for final decision 
making. 
 

II. BASIC CONCEPTS OF DEEP LEARNING  
Machine learning, or learning that occurs without explicit 
programming, can take place in one of two forms: 
conventional, “shallow” learning (neural networks with a 
single hidden layer or support vector machines), or deep 
learning (neural networks with many hierarchical layers of 
nonlinear information processing). Deep learning was 
recently reviewed in detail by [24] While deep and 
shallow learning differ in more than one way and both 

approaches have value in specific applications, the 
takeaway difference is that shallow learning does not deal 
well with raw data, requiring extensive human input to set 
up and maintain, whereas deep learning can be largely 
unsupervised once set in motion, learning intricate patterns 
from even high-dimensional raw data with little 
guidance.[24] Ref. [25] referred to this as optimizing the 
breadth/depth trade-off; 2 that is, only a deep circuit can 
perform exponentially complex computational tasks 
without requiring an infinite number of elements.[25] The 
importance of this is most readily apparent in the areas 
where deep learning has been shown to be useful: image 
and language recognition [26] and video games [27] are 
two common examples, or, perhaps more interestingly, 
replication of painting styles or even composition of 
classical music.[28] The type of learning required in these 
tasks is representation learning; that is, detecting or 
classifying patterns, or representations, from raw data,[24] 
particularly when this data is heirarchical in structure. 
Image recognition, for example, begins with learning a 
progressive hierarchy of subimages from pixels, starting 
with edges, then motifs, until the final output is a whole 
object.[24] Representations are formed through simple 
associations using, for example, pixels as raw data, not by 
human labeling or preprogrammed logic. Being essentially 
unsupervised algorithms, deep neural networks can act as 
feature detector units at each layer (level) that gradually 
extract more sophisticated and invariant features from the 
original raw input signals. One can imagine the impossible 
effort of annotating the millions of images that machines 
can now accurately identify. That machines can now 
distinguish images of two nearly identical objects or 
complete a sentence is all possible increasingly with help 
from deep learning. These and other recent developments 
in DNN architectures have boosted enthusiasm within the 
machine learning community, with unprecedented 
performance in many challenging tasks [29, 30]. They 
have also raised important questions about whether deep 
learning could also automate tasks like annotation, image 
recognition, prediction, and classification in similar 
biological applications, where the sheer amount and 
complexity of data has surpassed human analytical 
capabilities. 
 

I. Why Deep Learning May Benefit  

Biomedical Research 

With some imagination, parallels can be drawn between 
biological data and the types of data deep learning has 
shown the most success in, image and voice data. A gene 
expression profile, for instance, is essentially a “snapshot”, 
or image, of what is going on in a given cell or tissue 
under given conditions, with patterns of gene expression 
representative of physical states in a cell or tissue in the 
same way that patterns of pixelation are representative of 
objects in a picture. In the same way that two similar but 
categorically different images must be discerned by deep 
learning algorithms regardless of background or position, 
two similar but categorically different disease pathologies 
may be difficult to distinguish if certain unimportant 
background conditions happen to match (e.g., tissues, time 
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points, individual, species, platform), thus selectivity of 
key differences is essential. Alternatively, one pathology 
may appear to differ from itself when imposed on a variety 
of different experimental “backgrounds” and in several 
different states of progression, so invariance to non-target-
related differences is also key. These features, selectivity 
and invariance, are requirements for both image 
recognition and gene expression analysis and are also two 
hallmarks of CNNs, the powerhouses of modern visual 
image processing.[24] The same type of analogies can be 
drawn with other applications of deep learning: language 
prediction, for example, requires sequential learning with 
recurrent neural networks[24] and can be paralleled with 
signaling cascades in biology, where one event can be 
predicted from previous upstream events in the same way 
that one word in a sentence can be predicted from the 
previous set of words. Structural prediction would be 
another example. The possibilities are endless; with 
enough interest in the topic, any number of other parallels 
can be drawn and new applications conceived. These 
parallels, while illustrative and hypothetical in nature, are 
also backed up by several practical advantages of DNNs 
that strengthen the case for biological application. First, 
DNNs require very large data sets, which biology is 
teeming with at this time. Second, DNNs are well-
equipped to handle high dimensional, sparse, noisy data 
with nonlinear relationships, all of which are common to 
transcriptomics and other -omics data in biology. Third, 
DNNs have high generalization ability; once trained on a 
data set, they can be applied to other, new data sets; this is 
a requirement for binding and interpretation of 
heterogeneous multiplatform data, such as gene expression 
data. 
Finally, these considerations are further supported by the 
fact that the small numbers of deep learning studies in 
biomedicine that now exist have shown success with this 
method. These are to be discussed below. Importantly, 
despite the suitability of DNN for biological data and the 
potential applications, the adoption of deep learning 
methods in biology has been slow. This may have several 
explanations. While deep architectures can be 
exponentially more efficient than conventional models, 
capturing fine subtleties in the structure of the data, [31] 
DNNs, especially recurrent networks, are very complex 
machines containing hundreds of millions of weights, 
which makes training and regularization difficult. Deep 
models are still not optimized, still lack an adequate 
formulation, require more research, and rely heavily on 
computational experimentation. It should also be 
emphasized that, despite being able to extract latent 
features from the data, DNNs are black boxes that learn by 
simple associations and co-occurrences. They lack the 
transparency and interpretability of other methods and 
may be unable to uncover complex causal and structural 
relationships common in biology without some human 
interpretation. Nevertheless, their many benefits may 
outweigh these obstacles, some of which may be 
overcome with time. 
 
 

II. Deep Learning Methods  

The goal of this section is to provide a formal introduction 
and definition of the deep learning concepts, techniques 
and architectures that we found in the breast cancer 

detection and diagnosis papers surveyed in this work. 
 

Neural networks  

Neural networks are a type of learning algorithm which 
forms the basis of most deep learning methods. With 
respect to artificial intelligence, are inspired by the 
biological basis of neural networks, in which neurons can 
sense their environment and communicate information to 
surrounding neurons. In artificial intelligence, neural 
networks are typically represented by layers. These layers 
are, essentially, computational functions that process input 
information, as it compares to training data, to predict an 
outcome (i.e. f(x) =y, where x is the input information, 
and y is the outcome prediction). Input neurons can sense 
new data and pass information onto neurons within 
different layers, processing this information. Connections 
between neurons are called “synaptic weights”, which are 
coefficients used to amplify or dampen the input signal by 
multiplication, assigning significance to the input to obtain 
the corresponding output.[28] The computational power of 
these networks relies on the extent of training data that is 
available, allowing these neural networks to update 
weights of the connections. Simple network structures 
with only a few layers are known as “shallow” learning 
neural networks, whereas network structures which 
employ numerous and large layers are referred to as 
“deep” learning neural networks. 
 

Convolutional neural networks (CNNs)  

There are two key differences between MLPs and CNNs. 
First, in CNNs weights in the network are shared in such a 
way that the network performs convolution operations on 
images. This way, the model does not need to learn 
separate detectors for the same object occurring at 
different positions in an image, making the net- work 
equivariant with respect to translations of the input. It also 
drastically reduces the amount of parameters (i.e. the 
number of weights no longer depends on the size of the 
input image) that need to be learned. An example of a 1D 
CNN is shown in Fig. 2 . At each layer, the input image is 
convolved with a set of K kernels W = { W 1 , W 2 , . . . , 
W K } and added biases B = { b 1 , . . . , b K } , each 
generating a new feature map X k . These features are 
subjected to an element-wise non-linear transform σ( ·) 
and the same process is repeated for every convolutional 
layer l :  

 
The second key difference between CNNs and MLPs, is 
the typical incorporation of pooling layers in CNNs, where 
pixel values of neighborhoods are aggregated using a 
permutation invariant function, typically the max or mean 
operation. This can induce a certain amount of translation 
invariance and increase the receptive field of subsequent 
convolutional layers. At the end of the convolutional 
stream of the network, fully connected layers (i.e. regular 
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neural network layers) are usually added, where weights 
are no longer shared. Similar to MLPs, a distribution over 
classes is generated by feeding the activations in the final 
layer through a softmax function and the network is 
trained using maximum likelihood. 
 

Recurrent neural networks (RNNs)  

Traditionally, RNNs were developed for discrete sequence 
analysis. They can be seen as a generalization of MLPs 
because both the input and output can be of varying 
length, making them suit- able for tasks such as machine 
translation where a sentence of the source and target 
language are the input and output. In a classification 
setting, the model learns a distribution over classes P (y | x 

1 , x 2 , . . . , x T ;_) given a sequence x 1 , x 2 , . . . , x T , 
rather than a single input vector x . The plain RNN 
maintains a latent or hidden state h at time t that is the 
output of a non-linear mapping from its input x t and the 
previous state h t−1 : 

  
where weight matrices W and R are shared over time. For 
classification, one or more fully-connected layers are 
typically added followed by a softmax to map the 
sequence to a posterior over the classes.  

 
Since the gradient needs to be back propagated from the 
out- put through time, RNNs are inherently deep (in time) 
and consequently suffer from the same problems with 
training as regular deep neural networks [32]. To this end, 
several specialized memory units have been developed, 
the earliest and most popular being the Long Short Term 
Memory (LSTM) cell [33]. The Gated Recurrent Unit [34] 
is a recent simplification of the LSTM and is also 
commonly used. Although initially proposed for one-
dimensional input, RNNs are increasingly applied to 
images. In natural images ‘pixelRNNs’ are used as 
autoregressive models, generative models that can 
eventually produce new images similar to samples in the 
training set. For medical applications, they have been used 
for segmentation problems, with promising results [35] in 
the MRBrainS challenge. 
 

Auto-encoders (AEs) and stacked auto-encoders 

(SAEs)  

AEs are simple networks that are trained to reconstruct the 
in- put x on the output layer x _ through one hidden layer 
h. They are governed by a weight matrix W x, h and bias b 

x, h from input to hid- den state and W h,x _ with 
corresponding bias b h,x _ from the hidden layer to the 
reconstruction. A non-linear function is used to compute 
the hidden activation: 

 

Additionally, the dimension of the hidden layer | h | is 
taken to be smaller than | x |. This way, the data is 
projected onto a lower dimensional subspace representing 
a dominant latent structure in the input. Regularization or 
sparsity constraints can be employed to enhance the 

discovery process. If the hidden layer had the same size as 
the input and no further non-linearities were added, the 
model would simply learn the identity function. The 
denoising auto-encoder [36] is another solution to prevent 
the model from learning a trivial solution. Here, the model 
is trained to reconstruct the input from a noise corrupted 
version (typically salt-and-pepper-noise). SAEs (or deep 
AEs) are formed by placing auto-encoder layers on top of 
each other. In medical applications surveyed in this work, 
auto-encoder layers were often trained individually 
(‘greedily’) after which the full network was fine-tuned 
using supervised training to make a prediction. 

End-to-End learning (or training)  
Often refers to the joint training of all parameters in a 
network such as the approach taken in Jia et. al. [31], 
Mortazi et. al. [32] and Sukhbaatar et. al.[ 33]. In neural 
networks, the input is accepted from one end, and the 
network produces an output at the other end. Training of 
parameters between these two ends (input to output) is 
called End-to-End training or learning. 
 
A pre-trained network (transfer learning) 
 As the name implies, uses a network that has been 
previously trained with images and has optimized 
parameters for the task it will be performing. If a pre-
trained network is used, then the parameters can be used 
for testing without the need for training the entire system, 
which can otherwise be a costly endeavor in terms of 
computation. Pre-training network will tend to work if the 
target task is similar to the base task (i.e. base task is the 
one that the network is trained and features are learned 
from). When the target data set is significantly smaller 
than the base data set, and the tasks are considerably 
different from each other (e.g. base network is trained to 
classify natural images while the target network is aimed 
to classify tumor images from mammography data), then 
the phenomena called transfer learning can be used to 
the transfer the knowledge from base task (i.e. features) 
into the target task. 
 

III. HARDWARE AND SOFTWARE  
One of the main contributors to the steep rise of deep 
learning papers has been the widespread availability of 
GPU and GPU- computing libraries (CUDA, OpenCL). 
GPUs are highly parallel computing engines, which have 
an order of magnitude more execution threads than central 
processing units (CPUs). With current hard- ware, deep 
learning on GPUs is typically 10–30 times faster than on 
CPUs. Next to hardware, the other driving force behind 
the popularity of deep learning methods is the wide 
availability of open-source software packages. These 
libraries provide efficient GPU implementations of 
important operations in neural networks, such as 
convolutions; allowing the user to implement ideas at a 
high level rather than worrying about efficient 
implementations. At the time of writing, the most popular 
packages were (in alphabetical order):  
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•Caffe ( Jia et al. [37]): Provides C++ and Python 
interfaces, developed by graduate students at UC 
Berkeley.  
•Tensorflow ( Abadi et al., [38] ): Provides C++ and 
Python and interfaces, developed by Google and is used 
by Google research.  
•Theano ( Bastien et al., [39] ): Provides a Python 
interface, developed by MILA lab in Montreal.  
•Torch ( Collobert et al., [40] ): Provides a Lua interface 
and is used by, among others, Facebook AI research.  
There are third-party packages written on top of one or 
more of these frameworks, such as Lasagne 
(https://github.com/Lasagne/ Lasagne) or Keras 
(https://keras.io/). It goes beyond the scope of this paper to 
discuss all these packages in detail. 
 

IV. UNDERSTANDING BREAST CANCER 

DIAGNOSIS IN THE DEEP LEARNING  
Machine learning algorithms (Naive Bayes, Genetic 
Algorithms, Fuzzy Logic, Clustering, Neural Networks, 
Support Vector Machines, Decision Trees and Random 
Forests etc.) have effectively been used for more than two 
decades for many purposes in breast cancer area such as 
detection, diagnosis, classification, and risk assessment. 
Figure 1 supports a representative comparison of 
conventional machine learning models based CAD 
systems and deep learning based CAD systems, as each 
one of them use radiographic images for diagnosis breast 
cancer. The conventional machine learning method for 
image classification modeling is trained by well designed 
hand-engineered attributes (e.g. visual descriptions such as 
sphericity, or low gradients in borders) that are learned 
from radiologists. In contrast, deep learning depends on 
high-level imaging attributes supported from large 
sources/sets of images opened and available for training 
purposes. The literature pertaining to these machine 
learning algorithms, before the deep learning era, is vast. 
Interested researchers and individuals can refer to the 
literature [41-52] for further description of conventional 
machine learning methods in breast cancer, which include 
a large number of methods that are beyond the scope of 
this review. 

Figure 1: Comparison of conventional machine learning 

Approach vs deep learning based approaches, ROI, 

Region of interest. 

V. BREAST CANCER IMAGING 

MODALITIES 
In fact, many modalities are available for screening and 
detecting breast cancer. High numbers of works have been 
made for enhancing the breast cancer diagnosis accuracy 
via various imaging modalities. Figure 2 presents the 
comparison between numbers of modalities in terms of 
effective radiation performed on the human body.  The 
combined PET and CT give a better view of the suspect 
cells, however, the imaging techniques (such as CT and 
PET) reflect high radiation exposure to patients. Once 
these techniques are used for screening, the sheer amount 
of radiation the body is exposed to, while imaging may 
itself trigger cancer development. Thus, it is always 
preferable and recommended to use imaging techniques 
(mammogram and MBI) which have comparatively lower 
effective radiation. 
 
Mammography 

Mammography is a dedicated imaging modality for breast 
screening that uses low-dose X-ray during breast 
examination. Mammography is currently the most 
effective tool for early detection of breast cancer; 
however, it has some restrictions. Breast density is a 
variety of confounding factors that make diagnosis of 
breast cancer more difficult in women with dense breasts 
(Ertosun and Rubin, 2015[53]). The contrast between 
cancer and background in dense breast image is very low, 
which can affect the diagnosis outcome (Longo et al., 
2014 [54]). In the mammographic examination, non-
cancerous lesions can be misinterpreted as cancer (false-
positive value), while cancers may be missed (false-
negative value). As a result, radiologists fail to detect 10 
% to 30 % of breast cancers (Bird et al., 1992[55]; Boyd et 
al., 2007[56]; Kerlikowske et al., 2000 [57]). The false-
positive value indicates the percentage of lesions that are 
found to be cancerous and subjected to biopsy. 

 

Figure 2:  Effective various medical imaging modalities 
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The miss rate in mammography has increased in dense 
breasts where the probability of cancer is four to six times 
higher than in non-dense breasts ( [56]; [58]; [59]).  
Several solutions have been proposed to enhance the 
specificity and sensitivity of mammography as well as to 
decrease unnecessary biopsies procedure. Double reading 
is one of the solutions that can significantly contribute to 
achieving high sensitivity and specificity ( [60], [61]). 
Additional costs will be imposed on the patients for 
double reading of mammography. CAD systems can be 
considered as an alternative framework that acts as a 
second reader to enhance the performance of physician's 
interpretation.  
The studies ( [62]; 2011[63]; [64];  [65]) have shown that 
the attention to use a computer to improve the 
performance of physicians to detect mass and micro-
calcification in mammography has increased in recent 
years. Gilbert et al.  [66] indicated that proportion of 
cancer detected was 199 of 227 (87.7 %) for double 
reading and 198 of 227 (87.2 %) for single reading with 
CAD system. The perspective assessment of the impact of 
CAD systems on interpretation mammogram images has 
been performed on a community of breast cancer patients 
[67]. Among 12,860 mammograms, the radiologist's 
performance was measured without CAD and with CAD. 
The recall rate increased from 6.6 % to 7.7 % and the 
proportion of early-stage malignancy detected the growth 
from 73 % to 78 %, which represents an increase in 
efficiency in the detection of cancer with the usage of 
CAD system. Micro-calcifications and masses are the two 
most significant signs of malignancy. Breast calcification 
is tiny specks of calcium which are scattered in the breast. 
In order to classify micro-calcification in benign and 
malignant, different properties such as size, shape, 
distribution pattern, density, and a number of micro-
calcifications are analyzed [68]. Detection of 
microcalcifications is a difficult task and the hardship 
increases in mammogram interpretation in young women 
due to the contrast reduction among micro-calcification 
and adjacent tissue [69]. Authors in [70] have provided a 
valuable study on techniques for suppressing noise, 
enhancing contrast, and extraction; and classification of 
micro-calcification. Another lesion in the breast is mass, 
which; is a circumscribed lump in the breast and might be 
categorized to be benign or malignant. Masses are 
characterized by various attributes such as shape (round, 
lobular, oval, irregular), margin (obscured, indistinct, and 
speculated), size, location, and their contrast. Mass 
detection is more difficult compared to micro-calcification 
because of the similarity and ambiguity of their 
characteristics with the normal tissue [71]; [72].  
Masses are generally observed in the dense regions of the 
breast with smoother boundary rather than micro-
calcification ( [72]). Due to these factors, mass detection is 
a challenging task for radiologists. In the past two 
decades, researchers have conducted a lot of effort for 
developing automatic systems to help radiologists in the 
detection and diagnosis of mass on mammography image. 
Oliver et al. [73] have presented an exhaustive study of 
CAD systems for the detection and segmentation of mass 

from mammogram images. In this study, the introduction 
of current systems for mass detection and the used 
strategies as well as a quantitative comparison of a few 
methods are provided. Although mammography is a 
proven modality for mortality reduction in breast cancer, 
one of the noteworthy points is low sensitivity and 
specificity in young women and dense breast ( [56]; [58]; 
[59]). Low specificity in screening mammography may 
cause some unnecessary biopsy [74]. This restriction 
increases the cost and stress imposed on the patient. 
Consequently, to gain high precision in mammography 
screening alone is difficult. Some observational studies 
have shown improve screening sensitivity in women with 
dense breast, through adjunct mammography with 
ultrasound ([75]; [76]; [77]; [78]; [79]; [80]). 

Ultrasound  

Ultrasound is a beneficial tool to evaluate breast issues 
and to follow up finding in physical exam or 
mammography. It is also recommended for breast 
screening during pregnancy and lactation. Ultrasound is 
suggested before diagnostic fine needle biopsy and it can 
be used for biopsy guidance and mass locating. Although 
ultrasound is less sensitive than MRI, it has converted a 
valuable tool as an adjunct to mammograms due to its 
availability, non-invasive, and costs effective than other 
options. The development of colour Doppler imaging and 
ultrasound echo-enhancing (contrast agents) provides 
additional information of anatomical and vascular flow 
related, which assists the differential diagnosis of breast 
lesions [81]. The studies indicate that ultrasound is able to 
detect and discriminate benign and malignant masses with 
high accuracy and also reduce the number of unnecessary 
biopsies [82]; [83].  
Ultrasound is more sensitive for detecting invasive cancer 
in dense breasts [84]; [85]. However, it is an operator-
dependent modality and the interpretation of its images 
requires expertise on the part of the radiologist. In order to 
overcome the operator dependency and increase the 
accuracy of diagnosis rate, computer-aided 
detection/diagnosis (CAD) systems are developed for 
breast cancer detection and classification on ultrasound 
images. Recently, several CAD systems have been 
proposed to reduce the influence of dependence on the 
operator in ultrasound and increase the diagnosis 
sensitivity and specificity  [86]; Kim et al., 2014[87]). 
CAD systems have been presented on Automated Breast 
Ultrasound (ABUS) (Kim et al., 2014[87]).  
The CAD system is evaluated on a dataset that involves 20 
cysts, 42 benign lesions, and 27 malignant lesions. The 
sensitivity achieved by this system was 82.67 percent and 
the false positive rate was 0.26 per image. The efficiency 
of CAD software is generally higher to detect lesion with a 
high risk of malignancy in contrast to the benign lesion 
[89]. Ref. [88] have presented the results of ultrasound 
image analysis with and without CAD system by junior 
radiologists to detect breast cancer. With the high 
sensitivity (95 %) and low specificity (48 %) achieved in 
this research, it appears that CAD system is a useful tools 
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for image interpretation for the junior radiologist in 
training. 
 
Magnetic Resonance Imaging (MRI)  

Since nearly three decades, MRI screening has been 
employed for detection and diagnosis of breast cancer 
lesions (Heywang et al., 1989 [90]). Breast MRI is a 
potential alternative, but the cost is higher than other 
imaging methods and not widely available as ultrasound 
and mammography. MRI is suggested for screening 
women who have a high risk of developing breast cancer, 
or it can be used to investigate suspicious areas found by 
the mammogram to help measure the size of the mass. 
Breast MRI is advised to women with family history of 
breast cancer and has a high rate of sensitivity (78-98 %) 
and low specificity ( 43-75 %) [91]. The interpretation 
process of MRI image is very time-consuming and 
requires a high level of radiologist experience to detect 
and differentiate benign and malignant lesions [92]. In 
recent studies, computer systems have been developed to 
facilitate MRI image analysis and improve the diagnosis 
productivity ([92]; [93]; [94]). 
 
Biopsy  

Biopsy is the final stage when a mammogram or other 
imaging modalities found any type of abnormality. During 
a biopsy, a sample is taken from suspicious lesion in order 
to conduct microscopic observation. There are several 
types of biopsies such as fine needle aspiration biopsy 
(FNAB), core biopsy, or surgical biopsy. FNAB is a 
common type of biopsy and during the examination; a 
cytological sample is obtained from the tumour and 
explored under a microscope to determine the occurrence 
of cancer cells. The main disadvantage of FNAB is that 
the needle cannot extract sufficient amount of tissue for 
diagnosis. Detection of cancer cells requires profound 
knowledge and sufficient experience in the field of 
histopathology (Filipczuk et al., 2012[95]). A vision-based 
computer system to automatically detect the cancer cells 
can help specialists to discriminate cancer from non-
cancer cells. In contrast to other CAD systems, fewer 
studies performed the analysis of breast histopathology 
images. Issac Niwas et al. (2012[96]) have used Log-
Gabor wavelet transform base decomposition method for 
histopathological images on HSV (Hue, Saturation, Value) 
colour space. The accuracy obtained by Least squares 
Support Vector Machine (LS-SVM) in this study was 98.3 
%. Another study has applied the Genetically Optimized 
Neural Network (GONN) algorithm for diagnosis on 
histopathology images (Bhardwaj and Tiwari, 2015[97]). 
They achieved an average accuracy of 97.73 %, 99.11 %, 
and 99.21 % for 50-50, 60-40 and 70-30 training-testing 
partitions respectively, and 99.26 % for 10-fold cross 
validation structure. 
 

Computed tomography (CT)  

The benefits of diagnostic computed tomography appear 
to be small, as it is of high cost and has the potential for 
high exposure of radiation. Therefore, its indications are 
very limited. 

Nuclear medicine breast imaging  

Technetium-99 sestamibi has been found to concentrate in 
some breast cancers. However, its role in breast cancer 
evolution has yet to be defined, because it cannot be used 
to differentiate benign lesions from malignant ones and its 
efficacy remains to be defined. 
 

Positron emission tomographic screening (PET)  

Early studies suggested that breast cancers have elevated 
metabolic activity, which can be detected using fluorine 
18-labeled glucose. PET may be a method for staging 
breast cancers and for assessing the possibility of 
recurrence after initial breast cancer treatment. The use of 
PET as a diagnostic technique to differentiate benign from 
malignant lesions and to reduce the need for needle 
aspiration biopsies is still under study. 
 

Breast mass evaluation 

 When a mass is found as part of the screening process, the 
histological type of the cancer should be determined. The 
first step is to determine whether the mass is solid or 
cystic, often accomplished through a needle aspiration 
biopsy, using a needle or syringe. If cystic fluid (non-
bloody serous fluid) is found, the patient is recommended 
to return for a follow-up re-evaluation in four to six 
weeks. However, if the mass is not cystic, then a fine 
needle aspiration should be performed. If the fine needle 
aspiration is inconclusive or negative, an open biopsy 
must be performed. 
 

VI. CORNERSTONES OF A CAD SYSTEM  

Medical image processing requires prior knowledge on the 
content and nature of image to select appropriate methods 
to implement the CAD system. In order to achieve a high 
level of efficiency for automated diagnosis, it is significant 
to employ efficacious image processing approaches in the 
main steps of CAD system. Commonly, the CAD system 
consists of four stages as shown in Figure 3. 

 

Figure 3: the main steps of CAD system 
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A brief description of the main stages of a CAD system is 
provided as follows: 
1. Image pre-processing: This step is essential for some 
modality such as ultrasound for the purpose of enhancing 
the image and reducing the noise with minimum distortion 
of image features. Some of the CAD systems do not have 
a pre-processing stage.  
2. Image segmentation: Image segmentation is a vital 
step towards efficient development of CAD systems. The 
main purpose of segmentation is the separation of the 
region of interest (ROI) commensurate with the desired 
properties [98]. Recently, imaging modalities such as 
magnetic resonance imaging (MRI), computed 
tomography (CT), 3D ultrasound, and many more 
modalities are capable of producing images in the form of 
3D. Therefore, 3D segmentation methods are desirable for 
more accurate segmentation in volumetric imagery.  
3. Feature extraction and selection: In this step, different 
features are extracted according to the characteristics of 
lesions from the image. These features are used to 
distinguish benign or malignant lesions. The feature set is 
usually very large and the selection of the most effective 
features is very critical for the next step.  
4. Classification: According to the selected features, the 
suspicious areas are classified to benign or malignant 
based on different classification techniques. The common 
classification methods used in medical imaging are 
presented in this section.  
5. Performance evaluation: This step evaluates the 
performance of CAD system. 
 

VII. OPEN SOURCE DATASET ACCESS AND 

QUALITY 

Researchers have access to several public and restricted 
image databases. However, quantity, quality, and 
availability of metadata and clinical data vary a lot 
between those datasets. For example, scanned hard copy 
films may not be useful for developing state-of-the-art 
digital mammography algorithms. One of the more 
popular databases is DDSM which is available to the 
general public containing more than 10,000 images. 
Unfortunately, the quality of the digitized films does not 
match that of FFDM [99] and the provided annotations are 
not as accurate as they should be for training machine 
learning systems (e.g., 339 images contain annotations 
although the masses are not clearly visible [100]). An up-
to-date and better curated version of DDSM was published 
more recently [100]. At the time of writing, only one 
group has published work on the new release of DDSM 
[101]. The second most frequently cited database is MIAS, 
however, compared to DDSM it lacks samples. 
Furthermore, offering only 8-bit images is no longer state 
of art; therefore we can only assume that this dataset will 
not be useful for future deep learning projects. The In 
Breast dataset is also often used as a benchmark as it 
consists of annotated FFDM images. However, with 115 
cases it is rather small, cannot be considered 
representative of real-world inputs, and is not suitable to 
assess the performance of algorithms in real-world 
settings. There are many other mammography datasets, 

with varying volume and quality. Table 1 summarizes the 
most popular of these publicly available data sources. 

VIII. REVIEW FOR DEEP LEARNING 

TECHNIQUES FOR BREAST  IMAGE 

ANALYSIS 

One of the earliest DNN applications from Sahiner et al. 
[102] was on breast imaging. Recently, interest has 
returned which resulted in significant advances over the 
state of the art, achieving the performance of human 
readers on ROIs [103]. Since most breast imaging 
techniques are two dimensional, methods successful in 
natural images can easily be transferred. With one 
exception, the only task addressed is the detection of 
breast cancer; this consisted of three subtasks: (1) 
detection and classification of mass-like lesions, (2) 
detection and classification of micro-calcifications, and (3) 
breast cancer risk scoring of images. Mammography is by 
far the most common modality and has consequently 
enjoyed the most attention. Work on tomosynthesis, US, 
and shear wave elastography is still scarce, and we have 
only one paper that analyzed breast MRI with deep 
learning; these other modalities will likely receive more 
attention in the next few years. Tables 2 summarized the 
literature and main messages.  

Table 1: public data sources 

Since many countries have screening initiatives for breast 
cancer, there should be massive amounts of data available, 
especially for mammography, and therefore enough 
opportunities for deep models to flourish. Unfortunately, 
large public digital databases are unavailable and 
consequently older scanned screen-film data sets are still 
in use. Challenges such as the recently launched DREAM 
challenge have not yet had the desired success. As a result, 
many papers used small data sets resulting in mixed 
performance. Several projects have addressed this issue by 
exploring semi-supervised learning [104], weakly 
supervised learning [105], and transfer learning [106]; 
[107]. Another method combines deep models with 
handcrafted features [108], which have been shown to be 
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complementary still, even for very big data sets [103]. 
State of the art techniques for mass-like lesion detection 
and classification tend to follow a two-stage pipeline with 
a candidate detector; this design reduces the image to a set 
of potentially malignant lesions, which are fed to a deep 
CNN [109]; [103] . Alternatives use a region proposal 
network (R-CNN) that bypasses the cascaded approach 
[110]. When large data sets are available, good results can 
be obtained. At the SPIE Medical Imaging conference of 
2016, a researcher from a leading company in the 
mammography CAD field told a packed conference room 

how a few weeks of experiments with a standard 
architecture (AlexNet) –trained on the company’s 
proprietary database –yielded a performance that was 
superior to what years of engineering handcrafted feature 
systems had achieved [109]. 
 
 
 
 
 
 

 

Table 2: Overview of papers using deep learning techniques for breast image analysis 

No. Studies Application 
Imaging 
Modality 

Deep Learning 
Technique 

Training Open Source Dataset 

1 Carneiro et al. [111] Mass Detection Mammographic CNN End-to-end Unpublished dataset 

2 
M. G. Ertosun and D. L. 
Rubin [112] 

Mass Detection Mammographic CNN End-to-end DDSM [113] 

3 W. Zhu [114] Mass Classification Mammographic CNN End-to-end MIAS [115] 

4 
I. Domingues and J. S. 
Cardoso [116] 

Mass Detection Mammographic CNN End-to-end DDSM [113] 

5 N. Dhungel et al. [117] Mass Detection Mammographic CNN End-to-end Unpublished dataset 

6 
B. Q. Huynh [118] Mass Lesion 

Classification 
Mammographic CNN 

Transfer 
learning 

DDSM [113]+ Inbreast 
[119] 

7 
D. L´evy & A. Jain [120] Mass Lesion 

Classification 
Mammographic CNN End-to-end Banco Web[121] 

8 
J. Arevalo et al. [122] Mass Lesion 

Classification 
Mammographic DCN End-to-end FFDM [160] 

9 J. Mordang et al. [123] 
Micro-classification 

Detection 
Mammographic CNN End-to-end Unpublished dataset 

10 J. Wang et al.  [124] 
Mass  

Classification 
Mammographic CNN End-to-end MIAS[115]  

11 J. Bekker et al.[125] 
Mass  

Classification 
Mammographic CNN End-to-end DDSM [113] 

12 J.  Arevalo [126] 
Mass Lesion 
Classification 

Mammographic CNN End-to-end BCDR [127] 

13 
K. Sharma & B. Preet 
[128] 

Classification Mammographic DCN End-to-end 
DDSM [113]+ 
INbreast[119] 

14 A. Dubrovina [129]  
 Multi-Region 

Segmentation & Tissue 
Classification 

Mammographic CNN End-to-end Unpublished dataset 

15 X. Pengcheng et al. [130] 

Mass  
Classification & 
Localization Of 
Abnormalities 

Mammographic CNN End-to-end MIAS [115] 

16 S. Karthik et al. [131] Mass Classification Mammographic DCN End-to-end WBCD 

17 
A.  Rakhlin1 et  al. [132] 
 

Mass Classification Histopathology CNN End-to-end 
MITOSATYPIA- 

14 [133] 

18 A. Jamieson [134] Mass Classification 
Mammographic 
& Ultrasound 

AND End-to-end DDSM[113] 

19 Albayrak et al. [135] Mitosis detection Histopathology CNN End-to-end MITOSATYPIA-14 [133]  

20 Spanhol et al. [136] classification Histopathology CNN End-to-end BreaKHis [137] 

21 Chen et al. [138] Mitosis detection Histopathology  FCN+CNN 
Transfer 
learning 

MITOSATYPIA-14 [133]   

22 Albarqouni et al. [139] Mitosis detection Histopathology CNN End-to-end MITOSATYPIA-14 [133] 

23 Xu et al. [140] Nuclei classification Histopathology SSAE End-to-end Unpublished dataset 

24 Wichakam et al.[141] Mass detection Mammographic CNN End-to-end INbreast [45] 

25 Suzuki et al.[142] Mass detection Mammographic CNN 
Transfer 
learning 

DDSM [46] 
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Table 2: Overview of papers using deep learning techniques for breast image analysis 

 

No. Studies Application Imaging Modality 
Deep Learning 

Technique 
Training Open Source Dataset 

26 Swiderski et al. [143] Lesion recognition Mammographic CNN End-to-end DDSM [46] 

27 Ertosun et al. [144] Mass segmentation Mammographic CNN End-to-end DDSM [46] 

28 Kallenberg et al. [145] 
segmentation & risk 

scoring 
Mammographic SSAE End-to-end FFDM [160] 

29 Dhungel et al. [146] Mass segmentation Mammographic DBN End-to-end 
DDSM [46] + 
INbreast[45] 

30 Dhungel et al.[147] Mass detection Mammographic DBN+CNN End-to-end DDSM [46] 

31 Kim et al.[148] Latent bilateral feature Tomosynthesis CNN End-to-end Unpublished dataset 

32 H. Chougrad [149] Mass detection Mammographic CNN 
End-to-end 

Transfer learning 
DDSM + BCDR + 

INbreast 

33 S. Wenqing et al. [150] Mass detection Mammographic CNN End-to-end FFDM [160] 

34 D. Selvathi [151] Mass detection Mammographic CNN End-to-end mini-MIAS 

35 
Pablo Guill´en-Rondon 
[152] 

Breast cancer 
Classification 

microscopic biopsy CNN 
End-to-end 

 
BreakHis[137] 

36 Dan C. Cires et al. [153] Mitosis detection microscopic biopsy DNN 
End-to-end 

 
Unpublished dataset 

37 Ming Fan et al.[154] Mass detection Tomosynthesis CNN 
End-to-end 

 
Unpublished dataset 

38 Dongdong et al. [155] prognosis prediction Mammographic DNN 
End-to-end 

 
METABRIC [156] 

39 Krzysztof  et al. [157] Breast Cancer Prediction Mammographic CNN 
End-to-end 

 
Unpublished dataset 

40 Kooi et al. [158] Mass Detection Mammographic DCN End-to-end DDSM [46] 

41 Becker et al. [159] Mass Detection Mammographic DCN End-to-end Unpublished dataset 

42 A. Ballin et al. [110] 
Mass Detection 
& Classification 

Mammographic DCN End-to-end DDSM [46] 

43 Dalmis et al. [161] 
Breast and fibroglandular 

tissue segmentation 
Mammographic CNN End-to-end Unpublished dataset 

44 Samala et al. [107] 
CNN on mammographic 

masses transferred to 
tomosynthesis 

Tomosynthesis CNN End-to-end 
DDSM [46] + 
INbreast[45] 

 

45 
Sun et al. [104] 
 

Mass Classification Mammographic CNN End-to-end DDSM [46] 

46 
Hwang and Kim [105] 
 

masses localization Mammographic CNN End-to-end DDSM [46] 

47 
Kisilev et al. [162] 
 

semantic descriptions of 
potential masses 

Mammographic CNN End-to-end Unpublished dataset 
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IX. SUMMARY AND DISCUSSION  
 

Literature on deep learning-based breast cancer detection 
from mammography shares very similar network designs: 
pre-trained network, data augmentation (or transfer 
learning), and extracting features to be used with 
classifiers such as support vector machine, random forest, 
or others. In other words, deep networks were used only 
for extracting discriminative features (i.e. imaging features 
that are unique to tumor type). The use of pre-trained 
networks for breast cancer diagnosis started in 2015. Most 
pre-trained networks are trained on the ImageNet data set 
owing to a large number of images (>1 million) and 
thousands of classes. Several studies showed that pre-
trained models could be used to boost classification results 
for mammograms. However, there is no consensus on 
what features should be used for classification. The only 
study, to our knowledge, that puts some sort of feature 
interpretations into the diagnostic task is by Becker et al 
[159]. Uniquely, the authors studied the relationship of 
breast density to classification accuracy and found that 
low density was easier to classify. 
Among the 47 surveyed papers on breast cancer, 6 studies 
were focused on cancer diagnosis based on digital 
pathological images, 36 studies were focused on cancer 
detection based on mammograms, two studies was focused 
on cancer detection with microscopic biopsy and 3 studies 
was focused on cancer detection with Tomosynthesis. For 
the papers on cancer detection based on mammograms, the 
open source databases were used such as: MIAS [115], 
INbreast [45], Banco Web [121], BreakHis [137] and 
DDSM [46]. Note that 37 of 47 surveyed papers used open 
source databases; the rest of papers tested and evaluated 
their methods on the datasets collected from medical 
organizations, such as medical universities, hospitals, and 
cancer research centers. The lack of large training data in 
the open source datasets was probably the main reason 
why those papers chose to use clinical data. Another 
possible reason is that the information, except images data, 
provided by open source datasets was limited for some 
specific applications. 
Among all 47 studies surveyed in this paper, 34 studies 
adopted CNN models, 6 studies adopted DCN models, 2 
studies adopted SSAE models, 2 studies adopted DNN 
models, 1 study adopted DBN model and 2 studies 
proposed hybrid model based on multiple types of deep 
learning models FCN & CNN. Each study and the 
corresponding deep learning methods being used in the 
paper are listed in Tables 2. Comparison results show that 
CNN has been widely studied and adopted for different 
types of cancer detection tasks. 
 

X. DISCUSSION AND FUTURE DIRECTIONS 
 

From the surveyed papers, we found that one big 
challenge of training deep learning models for medical 
image analysis was the lack of large training datasets. 
Although the popularization of picture archiving and 
communication system (PACS) in hospitals has helped 
gather millions of medical images, most of them include 

confidential information of patients and they are stored in 
hospitals. In order to make those datasets available for 
research uses, more efforts are needed on those data, such 
as de-identification and data transportation. Many 
surveyed papers used different datasets collected from 
hospitals or cancer research organizations to test and 
evaluate deep learning models. The main drawback is that 
it is difficult to compare the performance of deep learning 
models among different studies. Open source medical 
image datasets have been provided for public research on 
different types of cancers in recent years. However, it is 
worth noting that, for some types of cancer research, the 
number of case studies (patients) in the dataset is too small 
[163]. In addition, some of open source datasets only 
contained raw image data, extra efforts from expert 
domain are required to generate ground truth for the 
purpose of the model training as well as evaluation. 
Therefore, it is desirable to build up larger and more 
systematic open source datasets for different applications.    
Another problem about the medical image dataset is that 
the ratio of positive and negative in the dataset is often 
heavily imbalanced. Training models directly on 
imbalanced data may bias the prediction towards the more 
common classes. We found that most studies ignored this 
problem in the training stage.  
Another big challenge using CNN models for cancer 
detection was the size variation of target objects within the 
images. To overcome this problem, several studies 
proposed to train the same CNN models using different 
scales of image data, and fused the outputs of multiple 
models to gain final result [139, 145 and 108]. I note that 
there is a lack of studies to compare the performance and 
efficiency of different methods. It is desirable to develop 
approaches robust to the size variation of target objects. 
The studies surveyed in this review used different datasets 
as well as different imaging modalities, thus it is difficult 
to conduct a comparison on the performance of all the 
methods (specificity and sensitivity) with clinical standard 
practice for cancer diagnosis. However, the ground truth 
of most datasets are provided through expert consensus or 
pathology report information, therefore it is reasonable to 
rely on the evaluation results to demonstrate the potential 
of deep learning algorithms for cancer detection and 
diagnosis. 
In summary, deep learning has shown a significant 
improvement compared with many other machine learning 
methods in different applications. The success of deep 
learning in natural scene image classification and 
segmentation stimulates the research of adopting it in 
image-based cancer detection and diagnosis. One major 
advantage of deep learning is that it reduces the need of 
feature engineering, which is one of the most complicated 
and time-consuming parts in machine learning practice, 
especially in processing redundant image data. In addition, 
it is relatively easy to adapt or modify existing deep 
learning architectures on new applications. However, it is 
worth noting that there are also some disadvantages in 
adopting deep learning in real practice: (1) deep learning 
models often require a large amount of training data to 
achieve superior performance than other methods. (2) 
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Training process is extremely computational expensive 
and it is quite time consuming to train a deep and complex 
model even with the support of most powerful GPU 
hardware. (3) The body of trained deep learning model is 
like a black box, we still lack the perfect methodology to 
fully comprehend its deep structure. 
 

XI. CONCLUSION 
In this paper, we surveyed most recent studies on the 
subject of applying deep learning techniques in image 
based cancer detection and diagnosis. This application is 
organized depending upon specific type of cancer, which 
is “breast cancer”. Six popular Images based deep learning 
models, including Convolutional neural networks, fully 
convolutional networks and deep belief networks are 
highlighted in the survey. The uniqueness of past studies 
and some potential topics for future study are discussed. 
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