Automatic Monitoring of Soil Moisture and Controlling of Irrigation System

Kandasamy V
Associate Professor, Department of EEE, Kumaraguru College of Technology, Coimbatore.
Email: kandasamy.v.eee@kct.ac.in

Divya R
PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore.
Email: divyadivi28995@gmail.com

ABSTRACT

In past couple of decades, there is immediate growth in field of agricultural technology. Utilization of proper method of irrigation by drip is very reasonable and proficient. A various drip irrigation methods have been proposed, but they have found to be very luxurious and dense to use. The farmer has to maintain watch on irrigation schedule in the conventional drip irrigation system, which is different for different types of crops. In remotely monitored embedded system for irrigation purposes have become a new essential for farmer to accumulate his energy, time and money and will take place only when there will be requirement of water. In this approach, the soil test for chemical constituents, water content, and salinity and fertilizer requirement data collected by wireless and processed for better drip irrigation plan. This paper reviews different monitoring systems and proposes an automatic monitoring system model using Wireless Sensor Network (WSN) which helps the farmer to improve the yield.

Keywords - Drip irrigation, Data logger, Fertilizer, Hotspot, Multiplexer, Remote monitoring, Soil, sensors, ZigBee.

Date of Submission: March 07, 2018
Date of Acceptance: April 09, 2018

I. INTRODUCTION

The Irrigation is the artificial application of water to the soil for assisting in growing crops. Drip irrigation also known as micro irrigation & is an irrigation method which minimizes the use of water & fertilizer by allowing water to drip slowly to the roots of plants, either onto the soil surface or directly onto the root zone due to which a large quantity of water is saved & also the fertilizer which comes to the plant with the water. Indian agriculture is dependent on the monsoons, which is dependent on the nature and not a reliable source of water, so there is a need for an automatic irrigation system in the country which can provide water to the farms according to their moisture, temperature and soil types & fertilizers. For a big farm land with horticulture activity the solution will be an automated system. Water contained in the soil is called soil moisture. And it is very important for plant growth. Water soluble fertilizer can be also applied without any wastage by this drip irrigation system. The advantage of using wireless sensors is to control all related parameters for better irrigation management.

This paper gives a review of remote monitoring and control system based on existing technologies. ZigBee or Hotspot based remote control and monitoring system with automatic irrigation management is proposed in this project. The rest of the paper is organized as follows. Section II summarizes the literature review on the existing systems. Section III analyzes the main aim and prime objective of the automatic irrigation system. Section IV describes the basic need of the project. Section V describes the proposed system. Finally, Section V deals with conclusion and future scope. And the last is the reference papers and publications.
In the last two decades, with the development of wireless technologies, several researches focused on autonomous irrigation with sensors in agricultural systems [25], [39]. Amongst these works, a micro sprinkler system has a different place, and it was designed for latching the controlled solenoid valves in a citrus orchard with wireless sensors [33]. Afterwards, soil moisture sensors and sprinkler valve controllers are being used for site-specific irrigation automation [16],[22],[36],[27],[9]. The advantages of using wireless sensors are having the reduced wiring and piping costs, and easier installation and maintenance in large areas [26],[37],[2]. After the usage of wireless technology began in agricultural irrigation, a trial was made to involve different types of equipments in such instrumentations. In terms of controllers,[22],[7],[8] were designed microcontroller site-specific irrigation, wireless monitoring system was implemented with a field programmable gate array (FPGA) by [20].

In terms of protocols, infra-red, GSM/GPRS WPANs (Wireless Personal Area Networks), Bluetooth, WLANs (Wireless Local Area Networks) have been put to different utilities to implement wireless sensors in precision agriculture [37],[4],[35],[29]. Many studies have successfully demonstrated the use of active and passive microwave remote sensing too [13],[34],[14]. It has been seen that many irrigation scheduling methods by wireless sensors have been developed for the last several decades. Many of the commercially available sensors, valves and modules assembled for irrigation system networks are too complex and/or costly to be feasible for site-specific management of fixed irrigation systems. The adoption of them by producers has been limited due to cost, installation time, maintenance, and complexity of systems [32], [23].

III. AIM & OBJECTIVE

Aim

The main aim of the research is to develop and to test an automation system having a low cost equipment and feedback type controller for site-specific management of irrigation systems and also to have a alternative power source like solar power or wind power. The data available from the various sensors will be received at the wireless base station for proper control, based on data.

Objective

The prime objective is to select the appropriate wireless network to collect the data from moisture sensors, water soluble fertilizer sensor placed in the field, temperature sensors of various areas of the field, pressure sensors in the irrigation system to monitor the proper drip of water along with the fertilizer which are kept in a separate tank. Another addition of the proposed automation system is to install the digital cameras to monitor the plant growth and overall condition of the field. In addition, the developed irrigation method partly removes the excess workload of the farmers.

To identify the suitable pump with facility for maintaining certain recommended pressure in the water pipe. To indentify proper sensors and monitoring device required for the farming data like soil moisture, soil temperature, soil fertilizer & chemical constituents.

Search of appropriate sensors with specifications and coordinating wireless system for acquisition of various data. To process the data based on the limits set and there by controlling the whole irrigation management. To find the economic method of drip irrigation and its technique for automation regarding short term and long term crop.

IV. NEED OF THE PROJECT

In India, the market is mainly based on agriculture and the climatic environment is isotropic and is not able to make full use of agricultural assets. The main cause is the lack of rains in many part of India and scarify of land water. The demand for new water saving techniques in irrigation is growing immediately right now. At the present period, the farmers have been using irrigation technique in India through the manual control in which the farmers irrigate the land at the normal interval. This process sometimes consumes additional water or sometimes the water reaches delayed due to which the crops get dehydrated. The effectiveness of the irrigation is determined by a number of different factors, including the type of irrigation system and the conditions at its instance of application.

Irrigation is the artificial application of water to the soil usually for supporting in harvesting the crops. In crop production, it is mainly used in desiccated area and in periods of rain water shortfalls.

Surface Irrigation

Surface irrigation is defined as the group of application techniques where water is applied and distributed over the soil surface by gravity. It is by far the most common form of irrigation throughout the world. Surface irrigation is often referred to as flood irrigation, use of canals, rivers, ponds, deep tube well are seen in surface irrigation.

Drip Irrigation

Drip irrigation, also known as trickle irrigation or micro irrigation or localized irrigation, is an irrigation method which saves water and fertilizer by allowing water to drip slowly to the roots of plants, either onto the soil surface or directly onto the root zone, through a network of valves, pipes, tubing, and emitter[40].

V. PROPOSED SOLUTION

The betterment of agriculture depends on various environmental parameters such as soil temperature, soil moisture, relative humidity, pH of soil, light intensity, fertilizing property of the soil, etc. Any small changes in any of these parameters can cause problems like diseases, improper growth of plant, etc. mainly resulting in lesser yield.
The block diagram of the proposed system of input unit is shown in Fig. 1 consists of different types of sensing unit such as Soil Moisture Sensor to measure water content of soil, Temperature Sensor detects the temperature, Humidity Sensor to measure the presence of water in air, Pressure Regulator Sensor to be selected for maintaining the recommended pressure, Molecular Sensor selected for better crop growth, Digital Camera with capability of tracking and taking photographs of the crop field to find the crop growth for measurement. The output of sensors are converted to analog using D/A converter at the transmitter input side and converted back to digital using A/D converter at the receiver output side. Multiplexer sometimes called Data selector is a combinational logic circuit that selects one of 2^n inputs and route it to the output. The data obtained from different types of sensors are transmitted to the Multiplexer using Wireless Sensor Network. ZigBee or Hotspot modules for wireless data transfer and receiving for control unit.

VI. CONCLUSIONS & FUTURE SCOPE

It can be concluded that the modern use of electronic, electrical, chemical and mechanical systems will be very advantages for better agricultural output. Preservation of water sources and minimizing the use of inorganic fertilizer are possible with these methods. Use of bio-fertilizer in appropriate manner will find better guiding parameters through the various sensing methods. In this age of population explosion the huge demand of food can be met with this state of the art process.

To keep the environmental balance of various sources of this planet and maintaining the methane generation during harvesting under control, this modern approach will help to reach a target with more modern gadgets. In future days to come, we can even apply food nutrients to the plant and crop by air mixed with very less water, with better monitoring.

REFERENCES

BIOGRAPHIES AND PHOTOGRAPHS

Kandasamy Varatharaju, is an Associate Professor of Department of Electrical and Electronics Engineering in Kumaraguru College of Technology, Coimbatore.

Divya Ragu, is a PG Scholar pursuing Embedded System Technologies in the Department of Electrical and Electronics Engineering in Kumaraguru College of Technology, Coimbatore.