
Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2209-2213 (2014) ISSN : 0975-0290

2209

Investigation and application of Personalizing
Recommender Systems based on ALIDATA

DISCOVERY
Tang Zhi-hang

School of Computer and Communication, Hunan Institute of Engineering Xiangtan 411104, China
Email: tang83769@126.com

--ABSTRACT---
To aid in the decision-making process, recommender systems use the available data on the items themselves.
Personalized recommender systems subsequently use this input data, and convert it to an output in the form of
ordered lists or scores of items in which a user might be interested. These lists or scores are the final result the
user will be presented with, and their goal is to assist the user in the decision-making process. The application of
recommender systems outlined was just a small introduction to the possibilities of the extension. Recommender
systems became essential in an information- and decision-overloaded world. They changed the way users make
decisions, and helped their creators to increase revenue at the same time.

Keywords - Recommender systems. Collaborative-based Systems. nearest neighbour

Date of Submission: August 04, 2014 Date of Acceptance: September 23, 2014

1 Introduction

Recommender systems have become extremely
common in recent years, and are applied in a variety of
applications. The most popular ones are probably movies,
music, news, books, research articles, search queries,
social tags, and products in general. However, there are
also recommender systems for experts, jokes, restaurants,
financial services, life insurance, persons (online dating),
and twitter followers [1].

Recommender systems typically produce a list of
recommendations in one of two ways - through
collaborative or content-based filtering.[2] Collaborative
filtering approaches build a model from a user's past
behavior (items previously purchased or selected and/or
numerical ratings given to those items) as well as similar
decisions made by other users; then use that model to
predict items (or ratings for items) that the user may have
an interest in.[3] Content-based filtering approaches
utilize a series of discrete characteristics of an item in
order to recommend additional items with similar
properties. These approaches are often combined (see
Hybrid Recommender Systems).

Each type of system has its own strengths and
weaknesses. In the above example, Last.fm requires a
large amount of information on a user in order to make
accurate recommendations. This is an example of the cold
start problem, and is common in collaborative filtering

systems. While Pandora needs very little information to
get started, it is far more limited in scope (for example, it
can only make recommendations that are similar to the
original seed).Recommender systems are a useful
alternative to search algorithms since they help users
discover items they might not have found by themselves.
Interestingly enough, recommender systems are often
implemented using search engines indexing
non-traditional data. ontaner provides the first overview
of recommender systems, from an intelligent agents
perspective.[4] Adomavicius provides a new overview of
recommender systems.[5] Herlocker provides an
additional overview of evaluation techniques for
recommender systems,[and Beel et al. discuss the
problems of offline evaluations.[6] They also provide a
literature survey on research paper recommender systems.

Recommender system is an active research area in
the data mining and machine learning areas. Some
conferences such as RecSys, SIGIR, KDD have it as a
topic.

2. BASIC CONCEPTION

2.1 Recommendation Operators
The Recommender Extension has a total 26
recommendation operators. These operators are grouped
in the following categories: Item Recommendation, Item
Rating Prediction, and Recommender Performance. T

Item recommendation operators operate over large
matrices that contain information about which user
consumed which item. These input matrices often
contain large numbers of empty entries, and can thus be
used in a more space-efficient way. We describe the
appropriate format used for efficient data loading and
storage in the next subsection.

2.2 Data
Typical recommender systems, operating on user

usage data, are built on top of large matrices called utility
matrices. These matrices usually contain elements from a
limited set of numbers, for example from 0, 1, 2, 3, 4, 5,
where 0 typically denotes that the user had no interaction
with the item, and the rest describes the level of that
interaction in a form of rating. Due to a large number of

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2209-2213 (2014) ISSN : 0975-0290

2210

both users and items, these matrices are typically very
large. In addition, since users mostly consume a very
small portion of items out of the total number of items,
these matrices tend to contain a lot of zeros—they tend to
be very sparsely populated. This is why special data
structures for handling sparse data need to be
implemented. In RapidMiner, we can use AML reader
operators to read such datasets. Input datasets used to
learn a recommender system model must be formatted in
two columns; for example, the first column can contain

user IDs, while the second can contain item IDs.
Attributes names, and their positioning can be arbitrary.
Prior to applying recommendation operators to input
datasets, proper roles have to be set for these attributes, as
seen in Table 9.3. Any additional attributes will not be
considered. An example of an AML, and a related DAT
file for item recommendation operators is given in Figure
1.

Figure 1 : An example of an AML and a related DAT file for item recommendation operators.

The recommender system datasets used throughout
this paper consists of content and collaborative data.
Content data was taken from the shopping system.
The content dataset described contains the following
content attributes for each item:
� brand ID: a unique integer that represents a lecture
� brand name: a text string containing a name of a

particular lecture
� brand description: a text string denoting a

description of a particular lecture
A particular item identifier is denoted by the small

letter i and the set of all items is denoted by the capital
letter I. Collaborative data contains synthetic click
streams of users, where each click stream is a sequence of

items viewed by a particular user in some time interval. In
the following text, we refer to the synthetic users as users.
A particular user identifier is denoted by the small letter u
and the set of all users is denoted by the capital letter U.
Click streams are transformed into the sparse matrix A,
which is called the usage matrix. The non-zero elements
of the usage matrix (A (i, u)) tell us that the item i was
consumed by the user u. Using this dataset, we construct
collaborative and content recommender systems in the
following sections. The collaborative recommender
systems rely on the usage matrix A while the content
recommender systems rely on items textual descriptions.
We can get figure 2.

Figure 2 Initial data from shopping system

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2209-2213 (2014) ISSN : 0975-0290

2211

2.3 Collaborative-based Systems

The main idea of collaborative recommendation
approaches is to use information about the past behavior
of existing users of the system for predicting which item
the current user will most probably like and thus might
consume. Collaborative approaches take a matrix of given
user-item ratings or viewings as an input and produce a
numerical prediction indicating to what degree the current
user will like or dislike a certain item, or a list of n
recommended items. The created list should not contain
items the current user has already consumed.

Neighborhood-based recommender systems work
by counting common items two users have viewed for
every pair of users in the system, or the number of
common users that viewed the same pair of items. Using
this count, similarity between two users or items is
calculated. Neighborhood systems use intuition that two
users who have viewed a large number of common items
have similar tastes. That information can be used to
recommend items that one user consumed and the other
one did not. We are interested in finding pairs of users
having the most similar taste, or pairs of items having
the most users that viewed both items. Those pairs of
users/items are called “the closest neighbors”. We
describe two main approaches of the
neighborhood-based recommender systems: user and
item-based nearest neighbor recommendation.
User-based nearest neighbor recommendation

Given a user-item viewing matrix and the ID of the
current user as input, identify other users having similar
past preferences to those of the active user. Subsequently,
for every product the active user has not yet consumed,
compute prediction based on the product usage of the
selected user subset. These methods assume that users,
who have previously shared similar tastes, will share
similar tastes in the future, and that user preferences
remain stable and constant over time.

To calculate similarity between users, two typical
similarity measures are used: the Pear- son correlation
and the Cosine correlation [6]. In our item
recommendation problem we used cosine correlation as
a similarity measure. Typically, we do not consider all
users in the database when calculating user similarity,
rather the k most similar ones.
Item-based nearest neighbor recommendation

When dealing with large problems, consisting of
millions of users, user-based collaborative filtering
approaches lead to increased memory usage and
execution time. Since the system is required to calculate
a large volume of potential neighbors, it becomes
impossible to compute predictions in real time. In some
cases, the number of users dominates the number of
items in the system so it would be natural to try to use
items for making recommendations. That is the reason
for creating a second neighborhood-based recommender

system based on items instead of users.
As opposed to the user-based approach, the

item-based recommendation approach computes
prediction using the similarity between items. We use a
cosine similarity measure, as we did in the user-based
approach. Likewise, as in the user-based approach, we
use k-nearest neighbors, i.e. the k most similar items, for
prediction.
3. Personalizing Recommender Systems

Collaborative recommender operators use the
user-item matrix to build a recommendation model. This
user-item matrix is presented as an example set of
user-item pairs describing user consumption history. The
recommendation model built with this matrix is used to
recommend items to users from a query set. The query set
is an example set containing identification numbers of
users for which we want to make recommendations. For
each user in the query set we recommend only the items
not consumed by this user. Figure 3 depicts a basic
collaborative recommender operator workflow.

Figure 3 An example of an item recommendation

workflow
The Recommended results shown in Figure 4.

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2209-2213 (2014) ISSN : 0975-0290

2212

Figure 4 The Recommended results

In the item recommendation workflow, the first two
operators read the train and the query example sets using
the Read AML operators (1,4). Following, the appropriate
roles are set to attributes using the Set Role operator (2).
The user identification role was set to user id attribute and
item identification role to item id attribute. Data attributes
can have arbitrary names but roles for those attributes
must be set. Next, we use the train data with the
appropriately set roles to train an Item k-NN model (3).
At this point we can use our trained model to recommend
new items to users in the query set using the Apply Model
operator (6). Prior to model application, the user
identification role was set for the query set (5). The Apply
Model operator (6) returns an example set containing the
first n ranked recommendations for every user in a query
set. In Figure 3 we have seen how to make
recommendations for particular users. In the following
figure, Figure 4, we show how to measure performance of
a recommendation model.

FIGURE 5 Measuring performance of a

recommendation model.
The data management part of the workflow for

measuring recommender model performance in Figure 5
is the same as in Figure 3. We use the Read AML
operators (1,4) to load the data input, and the Set Role
operators (2,5) to set the appropriate roles. In this
workflow we use the test data (4) containing two
attributes, the user id and the item id attribute and we set
user identification and item identification roles to those
at-tributes, respectively. The difference from the previous
workflow is the need to calculate the performance of our
built recommendation model (3). We use the Performance
operator (6) to measure standard recommendation error
measures we previously defined: AUC, Prec@k, NDCG,
and MAP. The Performance operator (6) returns a
performance vector and an example set containing
performance measures. This enables a user to choose
which format suits his or her needs. We can get Figure 6.

Figure 5 the performance of Recommender Systems

4. Conclusions

Recommender systems became essential in an
information- and decision-overloaded world. They
changed the way users make decisions, and helped their
creators to increase revenue at the same time. Bringing
recommender systems to a broader audience is essential
in order to popularize them beyond the limits of

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2209-2213 (2014) ISSN : 0975-0290

2213

scientific research and high technology entrepreneurship.
The goal of the Recommender Extension for
RapidMiner and this paper was to bring recommenders
to a broad audience, in a theoretical, practical, and above
all, application way.

In this paper we presented recommender systems
and their different techniques: collaborative filtering,
content-based recommender systems, and hybrid
systems. We presented the advantages and disadvantages
of each of those systems and demonstrated how they
could be implemented easily in RapidMiner. The
application of recommender systems outlined was just a
small introduction to the possibilities of the extension.
We hope you will use the knowledge obtained through
this paper in your own applications, problems, and
businesses, and that recommender systems will assist
you in reaching quality, informed decisions.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (No. 61272295) and 2014 science
and technology plan of Hunan province (No.
2014GK3157).

REFRENCES
[1]. Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh

Sharma, Dong Wang, and Reza Zadeh. WTF: The
Who to Follow Service at Twitter. Proceedings of
the 22th International World Wide Web Conference
(WWW 2013), pages 505-514, May 2013, Rio de
Janeiro, Brazil

[2]. Hosein Jafarkarimi; A.T.H. Sim and R. Saadatdoost
A Naïve Recommendation Model for Large
Databases, International Journal of Information and
Education Technology, June 2012

[3]. Jump up Prem Melville and Vikas Sindhwani,
Recommender Systems, Encyclopedia of Machine
Learning, 2010.

[4]. Montaner, M.; Lopez, B.; de la Rosa, J. L. (June
2003). "A Taxonomy of Recommender Agents on
the Internet". Artificial Intelligence Review 19 (4):
285–330

[5]. Adomavicius, G.; Tuzhilin, A. (June 2005). "Toward
the Next Generation of Recommender Systems: A
Survey of the State-of-the-Art and Possible
Extensions". IEEE Transactions on Knowledge and
Data Engineering 17 (6): 734–749

[6]. Beel, J.; Langer, S.; Genzmehr, M.; Gipp, B.
(October 2013). "A Comparative Analysis of Offline
and Online Evaluations and Discussion of Research
Paper Recommender System Evaluation".
Proceedings of the Workshop on Reproducibility
and Replication in Recommender Systems
Evaluation (RepSys) at the ACM Recommender
System Conference

