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------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
To aid in the decision-making process, recommender systems use the available data on the items themselves. 
Personalized recommender systems subsequently use this input data, and convert it to an output in the form of 
ordered lists or scores of items in which a user might be interested. These lists or scores are the final result the 
user will be presented with, and their goal is to assist the user in the decision-making process. The application of 
recommender systems outlined was just a small introduction to the possibilities of the extension. Recommender 
systems became essential in an information- and decision-overloaded world. They changed the way users make 
decisions, and helped their creators to increase revenue at the same time.  

Keywords - Recommender systems. Collaborative-based Systems. nearest neighbour 

Date of Submission: August 04, 2014       Date of Acceptance: September 23, 2014 
 
1 Introduction 

Recommender systems have become extremely 
common in recent years, and are applied in a variety of 
applications. The most popular ones are probably movies, 
music, news, books, research articles, search queries, 
social tags, and products in general. However, there are 
also recommender systems for experts, jokes, restaurants, 
financial services, life insurance, persons (online dating), 
and twitter followers [1]. 

Recommender systems typically produce a list of 
recommendations in one of two ways - through 
collaborative or content-based filtering.[2] Collaborative 
filtering approaches build a model from a user's past 
behavior (items previously purchased or selected and/or 
numerical ratings given to those items) as well as similar 
decisions made by other users; then use that model to 
predict items (or ratings for items) that the user may have 
an interest in.[3] Content-based filtering approaches 
utilize a series of discrete characteristics of an item in 
order to recommend additional items with similar 
properties. These approaches are often combined (see 
Hybrid Recommender Systems). 

Each type of system has its own strengths and 
weaknesses. In the above example, Last.fm requires a 
large amount of information on a user in order to make 
accurate recommendations. This is an example of the cold 
start problem, and is common in collaborative filtering 

systems. While Pandora needs very little information to 
get started, it is far more limited in scope (for example, it 
can only make recommendations that are similar to the 
original seed).Recommender systems are a useful 
alternative to search algorithms since they help users 
discover items they might not have found by themselves. 
Interestingly enough, recommender systems are often 
implemented using search engines indexing 
non-traditional data. ontaner provides the first overview 
of recommender systems, from an intelligent agents 
perspective.[4] Adomavicius provides a new overview of 
recommender systems.[5] Herlocker provides an 
additional overview of evaluation techniques for 
recommender systems,[and Beel et al. discuss the 
problems of offline evaluations.[6] They also provide a 
literature survey on research paper recommender systems. 

Recommender system is an active research area in 
the data mining and machine learning areas. Some 
conferences such as RecSys, SIGIR, KDD have it as a 
topic. 

2. BASIC CONCEPTION  

2.1 Recommendation Operators 
The Recommender Extension has a total 26 
recommendation operators. These operators are grouped 
in the following categories: Item Recommendation, Item 
Rating Prediction, and Recommender Performance. T 

Item recommendation operators operate over large 
matrices that contain information about which user 
consumed which item. These input matrices often 
contain large numbers of empty entries, and can thus be 
used in a more space-efficient way. We describe the 
appropriate format used for efficient data loading and 
storage in the next subsection. 
 

2.2 Data 
Typical recommender systems, operating on user 

usage data, are built on top of large matrices called utility 
matrices. These matrices usually contain elements from a 
limited set of numbers, for example from 0, 1, 2, 3, 4, 5, 
where 0 typically denotes that the user had no interaction 
with the item, and the rest describes the level of that 
interaction in a form of rating. Due to a large number of 
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both users and items, these matrices are typically very 
large. In addition, since users mostly consume a very 
small portion of items out of the total number of items, 
these matrices tend to contain a lot of zeros—they tend to 
be very sparsely populated. This is why special data 
structures for handling sparse data need to be 
implemented. In RapidMiner, we can use AML reader 
operators to read such datasets. Input datasets used to 
learn a recommender system model must be formatted in 
two columns; for example, the first column can contain 

user IDs, while the second can contain item IDs. 
Attributes names, and their positioning can be arbitrary. 
Prior to applying recommendation operators to input 
datasets, proper roles have to be set for these attributes, as 
seen in Table 9.3. Any additional attributes will not be 
considered. An example of an AML, and a related DAT 
file for item recommendation operators is given in Figure 
1. 
 
 

 
Figure 1 : An example of an AML and a related DAT file for item recommendation operators. 

 
 

The recommender system datasets used throughout 
this paper consists of content and collaborative data. 
Content data was taken from the shopping system. 
The content dataset described contains the following 
content attributes for each item: 
� brand ID: a unique integer that represents a lecture  
� brand name: a text string containing a name of a 

particular lecture 
� brand description: a text string denoting a 

description of a particular lecture 
A particular item identifier is denoted by the small 

letter i and the set of all items is denoted by the capital 
letter I. Collaborative data contains synthetic click 
streams of users, where each click stream is a sequence of 

items viewed by a particular user in some time interval. In 
the following text, we refer to the synthetic users as users. 
A particular user identifier is denoted by the small letter u 
and the set of all users is denoted by the capital letter U. 
Click streams are transformed into the sparse matrix A, 
which is called the usage matrix. The non-zero elements 
of the usage matrix (A (i, u)) tell us that the item i was 
consumed by the user u. Using this dataset, we construct 
collaborative and content recommender systems in the 
following sections. The collaborative recommender 
systems rely on the usage matrix A while the content 
recommender systems rely on items textual descriptions. 
We can get figure 2. 
 
 

 
Figure 2 Initial data from shopping system 
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2.3 Collaborative-based Systems 

The main idea of collaborative recommendation 
approaches is to use information about the past behavior 
of existing users of the system for predicting which item 
the current user will most probably like and thus might 
consume. Collaborative approaches take a matrix of given 
user-item ratings or viewings as an input and produce a 
numerical prediction indicating to what degree the current 
user will like or dislike a certain item, or a list of n 
recommended items. The created list should not contain 
items the current user has already consumed. 

Neighborhood-based recommender systems work 
by counting common items two users have viewed for 
every pair of users in the system, or the number of 
common users that viewed the same pair of items. Using 
this count, similarity between two users or items is 
calculated. Neighborhood systems use intuition that two 
users who have viewed a large number of common items 
have similar tastes. That information can be used to 
recommend items that one user consumed and the other 
one did not. We are interested in finding pairs of users 
having the most similar taste, or pairs of items having 
the most users that viewed both items. Those pairs of 
users/items are called “the closest neighbors”. We 
describe two main approaches of the 
neighborhood-based recommender systems: user and 
item-based nearest neighbor recommendation. 
User-based nearest neighbor recommendation 

Given a user-item viewing matrix and the ID of the 
current user as input, identify other users having similar 
past preferences to those of the active user. Subsequently, 
for every product the active user has not yet consumed, 
compute prediction based on the product usage of the 
selected user subset. These methods assume that users, 
who have previously shared similar tastes, will share 
similar tastes in the future, and that user preferences 
remain stable and constant over time. 

To calculate similarity between users, two typical 
similarity measures are used: the Pear- son correlation 
and the Cosine correlation [6]. In our item 
recommendation problem we used cosine correlation as 
a similarity measure. Typically, we do not consider all 
users in the database when calculating user similarity, 
rather the k most similar ones. 
Item-based nearest neighbor recommendation 

When dealing with large problems, consisting of 
millions of users, user-based collaborative filtering 
approaches lead to increased memory usage and 
execution time. Since the system is required to calculate 
a large volume of potential neighbors, it becomes 
impossible to compute predictions in real time. In some 
cases, the number of users dominates the number of 
items in the system so it would be natural to try to use 
items for making recommendations. That is the reason 
for creating a second neighborhood-based recommender 

system based on items instead of users. 
As opposed to the user-based approach, the 

item-based recommendation approach computes 
prediction using the similarity between items. We use a 
cosine similarity measure, as we did in the user-based 
approach. Likewise, as in the user-based approach, we 
use k-nearest neighbors, i.e. the k most similar items, for 
prediction. 
3. Personalizing Recommender Systems 

Collaborative recommender operators use the 
user-item matrix to build a recommendation model. This 
user-item matrix is presented as an example set of 
user-item pairs describing user consumption history. The 
recommendation model built with this matrix is used to 
recommend items to users from a query set. The query set 
is an example set containing identification numbers of 
users for which we want to make recommendations. For 
each user in the query set we recommend only the items 
not consumed by this user. Figure 3 depicts a basic 
collaborative recommender operator workflow. 

 
Figure 3  An example of an item recommendation 

workflow 
The Recommended results shown in Figure 4. 
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Figure 4 The Recommended results 

In the item recommendation workflow, the first two 
operators read the train and the query example sets using 
the Read AML operators (1,4). Following, the appropriate 
roles are set to attributes using the Set Role operator (2). 
The user identification role was set to user id attribute and 
item identification role to item id attribute. Data attributes 
can have arbitrary names but roles for those attributes 
must be set. Next, we use the train data with the 
appropriately set roles to train an Item k-NN model (3). 
At this point we can use our trained model to recommend 
new items to users in the query set using the Apply Model 
operator (6). Prior to model application, the user 
identification role was set for the query set (5). The Apply 
Model operator (6) returns an example set containing the 
first n ranked recommendations for every user in a query 
set. In Figure 3 we have seen how to make 
recommendations for particular users. In the following 
figure, Figure 4, we show how to measure performance of 
a recommendation model. 

 
FIGURE 5   Measuring performance of a 

recommendation model. 
The data management part of the workflow for 

measuring recommender model performance in Figure 5 
is the same as in Figure 3. We use the Read AML 
operators (1,4) to load the data input, and the Set Role 
operators (2,5) to set the appropriate roles. In this 
workflow we use the test data (4) containing two 
attributes, the user id and the item id attribute and we set 
user identification and item identification roles to those 
at-tributes, respectively. The difference from the previous 
workflow is the need to calculate the performance of our 
built recommendation model (3). We use the Performance 
operator (6) to measure standard recommendation error 
measures we previously defined: AUC, Prec@k, NDCG, 
and MAP. The Performance operator (6) returns a 
performance vector and an example set containing 
performance measures. This enables a user to choose 
which format suits his or her needs. We can get Figure 6. 

 
Figure 5  the performance of Recommender Systems 

 

4. Conclusions 

Recommender systems became essential in an 
information- and decision-overloaded world. They 
changed the way users make decisions, and helped their 
creators to increase revenue at the same time. Bringing 
recommender systems to a broader audience is essential 
in order to popularize them beyond the limits of 
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scientific research and high technology entrepreneurship. 
The goal of the Recommender Extension for 
RapidMiner and this paper was to bring recommenders 
to a broad audience, in a theoretical, practical, and above 
all, application way. 

In this paper we presented recommender systems 
and their different techniques: collaborative filtering, 
content-based recommender systems, and hybrid 
systems. We presented the advantages and disadvantages 
of each of those systems and demonstrated how they 
could be implemented easily in RapidMiner. The 
application of recommender systems outlined was just a 
small introduction to the possibilities of the extension. 
We hope you will use the knowledge obtained through 
this paper in your own applications, problems, and 
businesses, and that recommender systems will assist 
you in reaching quality, informed decisions. 
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