
Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2096

Soft Computing Approaches To Fault Tolerant
Systems

1Neeraj Prakash Srivastava, 2 Dr R. K. Srivastava
1Research Scholar, Mewar University

2 Associate Professor, Dept of Computer Science, Bareilly College Bareilly, UP, India
Email : rk_srivastava17@rediffmail.com

---ABSTRACT---
We present in this paper as an introduction to soft computing techniques for fault tolerant systems and the
terminology with different ways of achieving fault tolerance. The paper focuses on the problem of fault tolerance
using soft computing techniques. The fundamentals of soft computing approaches and its type with introduction of
fault tolerance are discussed. The main objective is to show how to implement soft computing approaches for fault
detection, isolation and identification. The paper contains details about soft computing application with an application
of wireless sensor network as fault tolerant system.

1. Introduction:

Future values of many real world processes having
uncertainty are neither exactly governed by a mathematical
model nor by probabilistic models. Soft computing, using the
relations, a generalization of function, has definitely proved
its worth by past researches, to model such situations.

Soft computing provides a computational
framework to address, design, analysis and modeling
problems in the context of uncertain and imprecise
information. Soft computing is tolerant of imprecision,
uncertainty, partial truth, and approximation. One of the
major thrust areas of research in the field of developing
decision system is to provide low cost solutions utilizing the
intelligent tools for information processing. The
development of hybridized technique like neuro-fuzzy
system is one of the fairly applicable tools in the framework
of soft computing. In effect, the role model for soft
computing is the human mind. The guiding principle of soft
computing is to: Exploit the tolerance for imprecision,
uncertainty, partial truth, and approximation to achieve
tractability, robustness and low solution cost and solve the
fundamental problem associated with the current
technological development: the lack of the required
intelligence of the recent information technology that enables
human-centered functionality. The basic ideas underlying
soft computing in its current incarnation have links to many
earlier influences, among them Zadeh�s1965 paper on fuzzy
sets; the 1975 paper on the analysis of complex systems and
decision processes; and the 1979 report (1981 paper) on
possibility theory and soft data analysis. The inclusion of
neural computing and genetic computing in soft computing
came at a later point.

The principal constituents of Soft Computing (SC) are:
� Fuzzy Systems (FS), including Fuzzy Logic (FL);
� Evolutionary Computation (EC), including Genetic
Algorithms (GA);
�Neural Networks (NN), including Neural Computing (NC);
� Machine Learning (ML);
� Probabilistic Reasoning (PR).

A fault tolerance is a setup or configurations that prevent a
computer or network device from failing in the event of an
unexpected problem or error. To make a computer or
network fault tolerant requires that the user or company to
think how a computer or network device may fail and take
steps that help prevent that type of failure. The
complementarily of FS, NN, EC, ML and PR has an
important consequence:

In many cases a problem can be solved most effectively by
using FS, NN, EC, ML and PR in combination rather than
exclusively. A striking example of a particularly effective
combination is what has come to be known as �neuro fuzzy
systems�. Such systems are becoming increasingly visible as
consumer products ranging from air conditioners and
washing machines to photocopiers and camcorders. Less
visible but perhaps even more important are neuro fuzzy
systems in industrial applications. What is particularly
significant is that in both consumer products and industrial
systems, the employment of soft computing techniques leads
to systems which have high MIQ (Machine Intelligence
Quotient). In large measure, it is the high MIQ of SC-based
systems that accounts for the rapid growth in the number and
variety of applications of soft computing.

1.1 Fuzzy Systems
Fuzzy systems are based on fuzzy logic, a generalization of
conventional (Boolean) logic that has been extended to
handle the concept of partial truth � truth values between

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2097

�completely true� and �completely false�. It was introduced
by L.A. Zadeh of University of California, Berkeley, U.S.A.,
in the 1960�s, as a means to model the uncertainty of natural
language. Zadeh himself says that rather than regarding
fuzzy theory as a single theory, we should regard the process
of �fuzzification� as a methodology to generalize any
specific theory from a crisp (discrete) to a continuous (fuzzy)
form.

1.1.1 Fuzzy Sets
The theory o f fuzzy sets now encompasses a well organized
corpus of basic notions including (and not restricted to)
aggregation operations, a generalized theory of relations,
specific measures of information content, a calculus of fuzzy
numbers. In mathematics fuzzy sets have triggered new
research topics in connection with category theory, topology,
algebra, analysis. Fuzzy sets are also part of a recent trend in
the study of generalized measures and integrals, and are
combined with statistical methods. Furthermore, fuzzy sets
have strong logical underpinnings in the tradition of many-
valued logics. Fuzzy set-based techniques are also an
important ingredient in the development of information
technologies. In the field of information processing fuzzy
sets are important in clustering, data analysis and data fusion,
pattern recognition and computer vision.

1.1.2 Fuzzy Logic
The degree to which the statement x is in F is true is
determined by finding the ordered pair whose first element is
x. The degree of truth of the statement is the second element
of the ordered pair. In practice, the terms �membership
function� and fuzzy subset get used interchangeably.
We know what a statement like �x is LOW� means in fuzzy
logic, how we interpret a statement like: (x is low) AND (y is
high) OR (NOT z is medium). The standard definitions in
fuzzy logic are:

Truth (NOT x) = 1.0 − truth(x),
Truth (x AND y) = min {truth(x), truth(y)},
Truth (x OR y) = max {truth(x), truth(y)}.

Generally speaking, logic, as a mathematical theory, studies
the notions of consequence. It deals with propositions
(sentences), sets of propositions and the relation of
consequence among them. The task of formal logic is to
present all this by means of well-defined logical calculi
admitting exact investigation. Various calculi differ in their
definitions of sentences and concepts of consequences, e.g.
propositional/predicate logics, modal propositional/ predicate
logics, many-valued propositional/predicate logics etc.

1.1.3 Fuzzy Numbers and Fuzzy Arithmetic
Fuzzy numbers are fuzzy subsets of the real line. They have
a peak or plateau with membership grade 1, over which the
members of the universe are completely in the set. The

membership function is increasing towards the peak and
decreasing away from it. Fuzzy numbers are used very
widely in fuzzy control applications. A typical case is the
triangular fuzzy number which is one form of the fuzzy
number. Slope and trapezoidal functions are also used, as
well as exponential curves similar to Gaussian probability
densities.

1.2 Neural Networks
There is no universally accepted definition of neural
networks (NN), a common characterization says that an NN
is a network of many simple processors (�units�), each
possibly having a small amount of local memory. The units
are connected by communication channels (�connections�)
which usually carry numeric (as opposed to symbolic) data,
encoded by any of various means. The units operate only on
their local data and on the inputs they receive via the
connections. The restriction to local operations is often
relaxed during training.
Some NNs are models of biological neural networks and
some are not, but historically, much of the inspiration for the
field of NNs came from the desire to produce artificial
systems capable of sophisticated, perhaps �intelligent�,
computations similar to those that the human brain routinely
performs, and thereby possibly to enhance our understanding
of the human brain. NNs normally have great potential for
parallelism, since the computations of the components are
largely independent of each other. Some people regard
massive parallelism and high connectivity to be defining
characteristics of NNs, but such requirements rule out
various simple models, such as simple linear regression (a
minimal feed-forward net with only two units plus bias),
which are usefully regarded as special cases of NNs.

Some definitions of neural networks are:
Definition 1:
�A neural network is a massively parallel distributed
processor that has a natural propensity for storing
experiential knowledge and making it available for use. It
resembles the brain in two respects:
1. Knowledge is acquired by the network through a learning
process.
2. Interneuron connection strengths known as synaptic
weights are used to store the knowledge�.
Definition 2:
�A neural network is a circuit composed of a very large
number of simple processing elements that are based on
neurons. Each element operates only on local information.
Furthermore each element operates asynchronously; thus
there is no overall system clock�.
Definition 3:
�Artificial neural systems, or neural networks, are physical
cellular systems which can acquire, store, and utilize
experiential knowledge�.

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2098

1.2.1 Principle of Neural Networks
In principle, NNs can compute any computable function, i.e.,
they can do everything a normal digital computer can do, or
perhaps even more.
In practice, NNs are especially useful for classification and
function approximation/ mapping problems which are
tolerant of some imprecision, which have lots of training
data available, but to which hard and fast rules (such as those
that might be used in an expert system) cannot easily be
applied.

2. Fault Tolerance
2.1 FAULT CHARACTERIZATION
 We use fault to mean an abnormal operating condition of the
computer system, which affects a running routine in some
way. The routine fails only when one or more faults cause it
to compute the wrong answer.

We give two classifications of faults. The first is hard and
second is soft:
(a).Hard faults: Cause program interruption and are outside
the scope of what the executable program can directly detect.
These faults can result from hardware failure or from data
integrity faults that lead to an in correct execution path. An
example of a hard fault would be the operating system
crashing, causing the program to stop executing.
(b).Soft faults: Do not cause immediate program interruption
and are detectable via introspection by user code. Soft faults
occur as incorrect floating point or integer data, or perhaps
incorrect address values that still point to valid user data
space. The second characterization applies only to soft faults,
and describes their temporal behavior:
(c). Persistent fault: The incorrect bit pattern will not change
as execution proceeds. Example: The primary source of a
data value is incorrect, so there is no ability to restore correct
state.
(d).Sticky fault: The incorrect bit pattern can be corrected by
direct action. Example: A backup source for the data exists
and can be used to restore correct state.
(e).Transient fault: The incorrect pattern occurs temporarily.
Example: Data in a cache is incorrect, but the correct value is
still present in main memory and the cache value is flushed.

2.2 REQUIREMENTS
 The requirements of fault tolerance are as:

a) Dependable Systems: Hazards to systems are a fact
of life. So are faults. Yet we want our systems to be
dependable. A system is dependable when it is
trustworthy enough that reliance can be placed on
the service that it delivers. For a system to be
dependable, it must be available, reliable, safe and
secure. Although these system attributes can be
considered in isolation, in fact they are
interdependent. For instance, a system that is not
reliable is also not available. A secure system that

doesn�t allow an authorized access is also not
available. An unreliable system to control nuclear
reactors is probably not a safe one either.

b) Approaches to Achieving Dependability: Achieving

the goal of dependability requires effort at all
phases of a system�s development. Steps must be
taken at design time, implementation time, and
execution time, as well as during maintenance and
enhancement. At design time, we can increase the
dependability of a system through fault avoidance
techniques. At implementation time, we can
increase the dependability of the system through
fault removal techniques. At execution time, fault
tolerance and fault evasion techniques are required.

2.3 STRATAGIES TO HANDEL FAULTS
a) Fault Avoidance: Fault avoidance uses various tools

and techniques to design the system in such a
manner that the introduction of faults is minimized.
A fault avoided is one that does not have to be dealt
with at a later time. Techniques used include design
methodologies, verification and validation
methodologies, modeling, and code inspections and
walk-through.

b) Fault Removal: Fault removal uses verification and
testing techniques to locate faults enabling the
necessary changes to be made to the system. The
range of techniques used for fault removal includes
unit testing, integration testing, regression testing,
and back-to-back testing. It is generally much more
expensive to remove a fault than to avoid a fault.

c) Fault Tolerance: In spite of the best efforts to avoid

or remove them, there are bound to be faults in any
operational system. A system built with fault
tolerance capabilities will manage to keep
operating, perhaps at a degraded level, in the
presence of these faults. For a system to be fault
tolerant, it must be able to detect, diagnose, confine,
mask, compensate and recover from faults.

d) Fault Evasion: It is possible to observe the behavior
of a system and use this information to take action
to compensate for faults before they occur. Often,
systems exhibit a characteristic or normal behavior.
When a system deviates from its normal behavior,
even if the behavior continues to meet system
specifications, it may be appropriate to reconfigure
the system to reduce the stress on a component with
a high failure potential. We have coined the term
fault evasion to describe this practice. For example,
a bridge that sways as traffic crosses may not be
exceeding specifications, but would warrant
increased attention from a bridge inspector.
Similarly, a computer system that suddenly begins
to respond sluggishly often prompts a prudent user

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2099

to backup any work in progress, even though
overall system performance may be within
specification.

2.4 FAULT CLASSES
No system can be made to tolerate all possible faults, so it is
essential that the faults be considered throughout the
requirements definition and system design process.
However, it is impractical to enumerate all of the faults to be
tolerated; faults must be aggregated into manageable fault
classes. Faults may be classified based on Locality (atomic
component, composite component, system, operator,
environment), on Effect (timing, data), or on Cause (design,
damage). Other possible classification criteria include
Duration (transient, persistent) and Effect on System State
(crash, amnesia, partial amnesia, etc.).
Since the location of a fault is so important, fault location is
a logical starting point for classifying faults.
1) Locality

(i).Atomic Component Faults:
Concept Definition: An atomic component fault is a
fault at the fault floor, that is, in a component that
cannot be subdivided for analysis purposes.
Bridge Example, A fault in an individual structural
member in a bridge may be considered a atomic
component fault. If the bridge design properly
distributes the load among the various structural
members (resources) of the bridge, then the load is
transferred to other structural members, no failure
occurs, and the fault is masked. The fault may be
detected by observation of cracks or deformation, or
it may remain latent. Computer System Example, in
a computer system, substrate faults can appear in
diverse forms. For instance, a fault in a memory bit
is not an atomic component fault if the details of the
memory are below the current span of concern.
Such a fault may or may not appear as a memory
fault, depending upon the memory�s ability to mask
bit faults.
(ii). Composite Component Faults:

Concept Definition: A composite component fault
is one that arises within an aggregation of atomic
components rather than in an atomic component. It
may be the result of one or more atomic component
faults. Bridge Example, A pier failure would be an
example of a composite component failure for a
bridge. Computer System Example, A disk drive
failure in a computer system is an example of a
composite component failure. If the individual bits
of memory are considered to be in the span of
concern, a failure of one of those would be a
component failure as well.

(iii). System Level Faults:

Concept Definition: A system level fault is one that
arises in the structure of a system rather than in the
system�s components. Such faults are usually
interaction or integration faults, that is, they occur
because of the way the system is assembled rather
than because of the integrity of any individual
component. Note that an inconsistency in the
operating rules for a system may lead to a system
level fault. System level faults also include operator
faults, in which an operator does not correctly
perform his or her role in system operation. Systems
that distribute objects or information are prone to a
special kind of system fault: replication faults.
Replication faults occur when replicated
information in a system becomes inconsistent,
either because replicates that are supposed to
provide identical results no longer do so, or because
the aggregate of the data from the various replicates
is no longer consistent with system specifications.
Replication faults can be caused by malicious
faults, in which components such as processors
�lie� by providing conflicting versions of the same
information to other components in the system.
Malicious faults are sometimes called Byzantine
faults after an early formulation of the problem in
terms of Byzantine generals trying to reach a
consensus on attacking when one of the generals is
a traitor. Bridge Example, A bridge failure resulting
from insufficient allowance for thermal expansion
in the overall structure could be considered a
system failure: individual structural members
behave as specified, but faulty assembly causes
failures when they interact. Computer System
Example, Consider the computer systems in an
automobile. Suppose the airbag deployment
computer and the anti-lock brake computer are both
known to work properly and yet fail in operation
because one computer interferes with the other
when they are both present. This would be a system
fault.

(iv)External Faults: External faults arise from outside
the system boundary, the environment, or the user.
Environmental faults include phenomena that directly
affect the operation of the system, such as temperature,
vibration, or nuclear or electromagnetic radiation or that
affects the inputs provided to the system. User faults are
created by the user in employing the system. Note that
the roles of user and operator are considered separately;
the user is considered to be external to the system while
the operator is considered to be a part of the system.
(v).Effects: Faults may also be classified according to
their effect on the user of the system or service. Since
computer system components interact by exchanging
data values in a specified time and/or sequence, fault
effects can be cleanly separated into timing faults and

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2100

value faults. Timing faults occur when a value is
delivered before or after the specified time. Value faults
occur when the data differs in value from the
specification.

(a).Value Faults: Computer systems communicate
by providing values. A value fault occurs when a
computation returns a result that does not meet the
system�s specification. Value faults are usually
detected using knowledge of the allowable values of
the data, possibly determined at run time.

(b).Timing Faults: A timing fault occurs when a
process or service is not delivered or completed within
the specified time interval. Timing faults cannot occur
if there is no explicit or implicit specification of a
deadline. Timing faults can be detected by observing
the time at which a required interaction takes place; no
knowledge of the data involved is usually needed.
Since time increases monotonically, it is possible to
further classify timing faults into early, late, or �never�
(omission) faults. Since it is practically impossible to
determine if �never� occurs, omission faults are really
late timing faults that exceed an arbitrary limit.
Systems that never produce value faults, but only fail
by omission are called fail-silent systems. If all failures
require system restart, the system is a fail-stop system.

(c).Duration: Persistent faults remain active for a
significant period of time. These faults are sometimes
termed hard faults. Persistent faults usually are the
easiest to detect and diagnose, but may be difficult to
contain and mask unless redundant hardware is
available. Persistent faults can be effectively detected by
test routines that are interleaved with normal processing.
Transient faults remain active for a short period of time.
A transient fault that becomes active periodically is a
periodic fault (sometimes referred to as an intermittent
fault). Because of their short duration, transient faults
are often detected through the faults that result from
their propagation.
(d).Immediate Cause: Faults can be classified according
to the operational condition that causes them. These
include resource depletion, logic faults, or physical
faults. Resource depletion faults occur when a portion of
the system is unable to obtain the resources required to
perform its task. Resources may include time on a
processing or communications device, storage, power,
logical structures such as a data structure, or a physical
item such as a processor. Logic faults occur when
adequate resources are available, but the system does
not behave according to specification. Logic faults may
be the result of improper design or implementation, as
discussed in the next section. Logic faults may occur in
hardware or software. Physical faults occur when
hardware breaks or a mutation occurs in executable
software. Most common fault tolerance mechanisms
deal with hardware faults.

(e).Ultimate Cause: Faults can also be classified as to
their ultimate cause. Ultimate causes are the things that
must be fixed to eliminate a fault. These faults occur
during the development process and are most effectively
dealt with using fault avoidance and fault removal
techniques. A common ultimate cause of a fault is an
improper requirements specification which leads to a
specification fault. Technically this is not a fault, since a
fault is defined to be the failure of a
component/interacting systems and a failure is the
deviation of the system from specification. However, it
can be the reason a system deviates from the behavior
expected by the user. An especially insidious instance of
this arises when the requirements ignore aspects of the
environment in which the system operates. For instance,
radiation causing a bit to flip in a memory location
would be a value fault which would be considered an
external fault. However, if the fault propagates inside
the system boundary the ultimate cause is a specification
fault because the system specification did not foresee the
problem. Flowing down the waterfall, a design fault
results when the system design does not correctly match
the requirements, and an implementation fault arises
when the system implementation does not adequately
implement the design. The validation process is
specifically designed to detect these faults. Finally, a
documentation fault occurs when the documented
system does not match the real system.

2.5 FAULT TOLERANCE IN GENERAL

PURPOSE COMPUTER
People may not realize to which extent fault-tolerance
techniques are used in general-purpose computers to increase
their reliability. Techniques used in general-purpose
computers are also utilized in more specialized fault-tolerant
computers, so it is a good starting point to study these
computers. Based on the assumption that most errors are
transient, recovery consists primarily of retry by the error
detection mechanisms. A retry is usually not done
immediately, but after a pause. During that time, the source
of the transient error, e.g. power instability, might have
disappeared. A computer is usually divided into three main
sections: processor, primary memory and I/O. These sections
often employ slightly different fault-tolerant techniques. In
the more expensive computers, and now also increasingly on
cheaper computers, double-error-detecting codes are also
used. In addition, parity is used on address and control
information. Recovery can be done with single error-
correcting codes on data and retry on address and control
information parity error. Memory, under software control,
can in some systems be dynamically reconfigured to exclude
bad pages.
Many of the techniques used on memory, can also be used
on I/O. Retry is often extensively used here, especially on
devices as disks this is an effective approach. A processor

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2101

contains many registers. To provide fault-tolerance here, the
same techniques as those used on memory can be used. In
addition, duplication of control logic is commonly used. To
increase availability, repair time has to be minimized. One
way to do this is remote diagnostics. When a fault is
detected, either the computer or an operator notifies a service
center, possibly located far Detection Recovery Memory
Parity and double-error-detecting code Single error-
correction code, retry and dynamically reconfigurable
memory I/O Parity Retry Processor Parity, duplication and
comparison retry away from the computer site. The service
center can connect to the computer, and use diagnostic
programs if necessary. The personnel at the service center
can either fix the problem from their site or ship a
replacement module to the failing site.

2.6 FAULT TOLERANCE MECHANISM
(i).Characteristics Unique to Digital Computer
Systems: Digital computer systems have special
characteristics that determine how these systems
fail and what fault tolerance mechanisms are
appropriate. First, digital systems are discrete
systems. Unlike continuous systems, such as
analog control systems, they operate in
discontinuous steps. Second, digital systems
encode information. Unlike continuous systems,
values are represented by a series of encoded
symbols. Third, digital systems can modify their
behavior based on the information they process.
(i).Redundancy Management: Fault tolerance is
sometimes called redundancy management.
Redundancy is necessary, but not sufficient for
fault tolerance. For example, a computer system
may provide redundant functions or outputs such
that at least one result is correct in the presence of
a fault, but if the user must somehow examine the
results and select the correct one, and then the
only fault tolerance is being performed by the
user. However, if the computer system correctly
selects the correct redundant result for the user,
then the computer system is not only redundant,
but also fault tolerant. Redundancy management
marshals the no-fault resources to provide the
correct result. Redundancy management or fault
tolerance involves the following actions. Fault
Detection: The process of determining that a fault
has occurred. Fault Diagnosis The process of
determining what caused the fault, or exactly
which subsystem or component is faulty.

(iii) Fault Containment: The process that prevents
the propagation of faults from their origin at one
point in a system to a point where it can have an
effect on the service to the user.

Fault Masking: The process of insuring that only
correct values get passed to the system boundary in
spite of a failed component.
Fault Compensation: If a fault occurs and is
confined to a subsystem, it may be necessary for the
system to provide a response to compensate for
output of the faulty subsystem.
Fault Repair: The process in which faults are
removed from a system. In well designed fault
tolerant systems, faults are contained before they
propagate to the extent that the delivery of system
service is affected.
3. Soft Computing approach
 Artificial Neural network based methods often
requires preprocessing algorithm to reduce the
effect of noise, distortions and to increase the fault
occurrences. Another technique has been combined
neural network including fuzzy logic and genetic
algorithm.
The study shows that potential for soft
computations to increase fault tolerance in general
purpose CPU. There are three important
characteristic of soft computing that make them
resilient of error that is first, redundancy, adaptivity
and reduce precision. Second, the extent to which
soft computing is fault tolerant on general purpose
CPU by conducting fault injection experiments and
do not alter the numerical results of the
computations. Third, the development of light
weight recovery technique that tries to check point
and recover only �Hard State�. Soft computations
as compare to traditional numerically oriented
computations shows increased resilience to fault
because soft computing permit a less strict
definition of program correctness due to qualitative
nature of their results and output state is
numerically correct with in some tolerance as well
as quality wise correct based on higher level
interpretation.
An important work load produced results having
higher user level interpretation, such computation as
soft computation. The data corruptions can change
the numerical result of soft computing. System that
can identify and exploit such error resiliency at the
user level offer new opportunities for fault tolerance
optimizations. The researchers have observed that
computing characteristics and proposed to exploit
them for reduced energy consumptions as well as
for fault tolerances.

4. Fault Tolerance in Wireless Sensor Networks
Applications such as security and surveillance monitoring,
battlefield command and control, and wildlife or medical
monitoring rely on the correct functioning of the underlying
WSNs for data sensing and retrieval in response to

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2102

application queries. In such applications, the WSNs are often
deployed in an area where replacements of sensors are
difficult or impossible. We consider three major sources of
faults that could cause a WSN to fail. One source is due to
energy depletion of Sensor Nodes, such that the underlying
WSN simply exhausts its energy to be able to answer
queries. Another source is due to sensor faults including
measurement faults. The third source is due to
communication faults because of noise and interference in
the WSN. To conserve energy of SNs, a well accepted
approach is for the WSN to self-organize itself into clusters.
Within a cluster, a cluster head is elected to perform more
data aggregation and relay duties than normal SNs and is
rotated applications concerned with sensor readings such as
the minimum/maximum/average of sensor data, cluster heads
can also perform training part of back propagation functions
to reduce error. A cluster can be Distributed manner on a
per-sensor-node basis. To cope with the second source of
faults, i.e., sensor faults, a general approach is to incorporate
redundancy to allow sensor faults to be detected, isolated,
and corrected so that the system can continue to function
correctly in data sensing and retrieval. However, the use of
redundancy impacts the energy consumption rate of the
system since more SNs would need to be used as redundancy
to achieve sensor fault tolerance. Therefore, there is a
tradeoff between these two sources of faults. On the one
hand, we like to incorporate redundancy to deal with sensor
faults. On the other hand, redundancy should be used only as
needed so as not to quickly deplete the energy of the system.
Current research work on fault tolerance mechanisms to cope
with sensor faults in WSNs can be classified into hardware
redundancy, time redundancy and information redundancy.
Hardware redundancy utilizes extra hardware for fault
detection or masking. For example, two temperature sensors
can be used to agree on a temperature reading before the
reading is considered as a correct response. If a discrepancy
exists, then a third temperature sensor can be used to reduce
the error and find the optimize value of third temperature
sensor. A sensor can also be made to disambiguate a sensor
measurement fault from a true event by using back
propagation algorithm after comparing readings obtained
from its neighbor sensors of the same type. The time to live
(TTL) value of query and reply packets is adjusted to allow
multiple readings to return to the processing center through
multiple paths. Time redundancy is a simple form of fault
tolerance that utilizes repeated execution as the primary
mechanism. One can monitor the output of a sensor reading
query to see if the output returned is within a normal range.
If the reading is out of ordinary, a second reading query can
be performed with the output. Information redundancy uses
the relationship among sensor data from the physical world
for fault detection. For example, a relation exists between
speed, pressure and position in a diesel engine such that if
the pressure sensor is detected to be faulty, one can deduce
its value from the other two sensor readings.

We consider a WSN as having experienced a failure when it
fails to deliver sensor data correctly in response to an
application-level query, due to one of the three sources of
faults, i.e., energy depletion, sensor fault, or communication
fault.
5. CONCLUSION
Fault-tolerance is achieved by applying a set of analysis and
design techniques to create systems with dramatically
improved dependability. In this we discussed different type
of faults and fault tolerance in conclusion; we got all the
information about fault characteristics. As new technologies
are developed and new applications arise, new fault-
tolerance approaches are also needed. In the early days of
fault-tolerant computing, it was possible to craft specific
hardware and software solutions from the ground up, but
now chips contain complex, highly-integrated
Functions, and hardware and software must be crafted to
meet a variety of standards to be economically viable

REFERENCES:

[1]. Aggarwal R K, Xuan Q Y, Johns A T, Li F R, Bennett

A, (1999), A novel approach to fault diagnosis in
multi-circuit transmission lines using fuzzy ARTmap
neural networks, IEEE transactions on neural
networks, Vol.10, No.5,pp.1214-1221.

[2]. Altug S, Chow MY, Trussell HJ, (1999), Fuzzy
inference systems implemented on neural
architectures for motor fault detection and diagnosis,
IEEE transactions on industrial electronics, 1999,
Vol.46, No.6, pp.1069-1079.

[3]. Aminian M, Aminian F, (2000), Neural-network
based analog-circuit fault diagnosis using the wavelet
transform as pre-processor, IEEE transactions on
circuits and systems ii-analog and digital signal
processing Vol.47, No.2, pp.151-156.

[4]. Brown M & Harris C J, (1994), Neuro-fuzzy adaptive
modelling and control, Prentice Hall. Brown M &
Harris C J, (1994b), The Modelling Abilities of the
Binary CMAC, IEEE Int.Conf. Neural Networks,pp
1335-133

[5]. Chen J, Patton R J (1999), Robust Model Based Fault
Diagnosis For Dynamic Systems, Kluwer Academic
Publishers ISBN 0-7923-8411-3.

[6]. Chen J, Patton, R J & G P Liu, (1997), Robust fault
detection of dynamic systems via genetic algorithms,
Pooc. Instn. Mech Engrs, 211, Part I, pp357-364.

[7]. Cristian, F., �Understanding Fault-Tolerant
Distributed Systems.�, Communications of the ACM,
vol. 34 no. 2, Feb 1991, 56-78.

[8]. Crowther W J, Edge K A, Burrows C R, Atkinson R
M & Woollons D J, (1998), Fault diagnosis of a
hydraulic actuator circuit using neural networks an
output vector space classification approach Journal of
Systems & Control Engineering, 212, (1), pp57-68.

Int. J. Advanced Networking and Applications
Volume: 5 Issue: 6 Pages: 2096-2103 (2014) ISSN : 0975-0290

2103

[9]. Dalmi I, Kocvacs L, Lorant I & Terstyansky G,
(1999), Application of Supervised and Unsupervised
Learning Methods to Fault Diagnosis, Proc. 14th
World

[10]. Dong D & McAvoy T J, (1996), Non-linear Principal
Component Analysis - Based on Principal Curves and
Neural Networks, Computers and Chemical
Engineering 20, pp. 65-78.

[11]. Farag W A, Quintana V H & Lambert-Torres G
(1998), A Genetic-Based Neuro-Fuzzy Approach for
Modelling and Control of Dynamical Systems, IEEE
Trans. Neural Networks, 9, (5).

[12]. J. Korbicz, J.M. Koscielny, Z. Kowalczuk, and W.
Cholewa (eds.), Fault Diagnosis. Models, Artificial
Intelligence, Apllications. Berlin: Springer-Verlag,
2004.

[13]. Kozyrakis, Christoforos E., and David Patterson, A
New Direction for Computer Architecture Research,
Computer, Vol. 31, No. 11, November 1998.

[14]. Laprie, J. C. (ed.), Dependability: Basic Concepts and
Terminology, Vienna, Springer-Verlag, 1992.

[15]. Melliar-Smith 91, Melliar-Smith, P. M. �A Project to
Investigate Data-base Reliability�,Report, Computing
Lab., University of Newcastle-upon-Tyne, England,
1975.

[16]. Naidu S, Zafirou E & McAvoy T J (1990), Use of
Neural-networks for failure detection in a control
system, IEEE Control Sys. Magazine, 10, 49-55.

[17]. Patton R J, (1997), Robustness in model-based fault
diagnosis: The 1997 Situation, A Rev. Control,21,
103-123, Pergamon Press.

[18]. Narendra K S & Parthasarathy K,
(1990),Identification and control of dynamic systems
using neural networks, IEEE Trans. on Neural
Network, 1, 4-27.

[19]. Narendra K S, (1996), Neural Networks for Control:
Theory and Practice, Proc of IEEE, Oct, 84 (10),1385-
1406. 84 (10), 1385-1406.

[20]. Narendra K G, Sood V K, Khorasani K, Patel R,
(1998), RBF Neural Network for fault diagnosis in a
HVDC system, IEEE transactions on power systems,
Vol.13, No.1, pp.177- 183.

[21]. Obuchowicz & Korbicz J, (1998), Evolutionary
Search with soft selection and forced direction of
mutation�, Proceedings of 7th Int. Symp. Intelligent
Information System, Malbork, Poland, June 15-19,
pp300-309.

[22]. Pantelelis N G, Kanarachos A E, Gotzias N, (2000),
Neural networks and simple models for the fault
diagnosis of naval turbochargers, Mathematics and
computers in simulation Vol.51, No.3-4, pp.387-397.

[23]. Patton R J, Chen J & Liu G P, (1997), Robust fault
detection of dynamic systems via genetic algorithms,
Proc. of IMechE Part I-J. of Syst. &Contr. Eng.
211(5): 357-364.

[24]. Patton R J, Chen J & Lopez-Toribio C J, (1998),
Fuzzy observers for non-linear dynamic systems fault
diagnosis. Proc. 37th IEEE Conf. On Decision and
Control, pp84-89.

[25]. Patton R J, Frank P M & Clark R N, (2000), Issues in
fault diagnosis for dynamic systems, Springer-Verlag,
London, April 2000.

[26]. Patton R J, Lopez-Toribio C J & Uppal F J, (1999),
Artificial Intelligence Approaches to Fault Diagnosis,
Applied Mathematics and Computer Science,
Technical University of Zielona Gora, Poland, Vol. 9,
No. 3, 471-518.

[27]. Pfeufer T, Ayoubi M, (1997), Application of a hybrid
neuro-fuzzy system to the fault diagnosis of an
automotive electromechanical actuator, Fuzzy sets and
systems, Vol.89, No.3, pp.351-360.

[28]. Ren X & Chen J, (1999), A Modified Neural Network
For Dynamical System Identification & Control,
Proc. 14th World Congress of IFAC ISBN 008
043248 4.

[29]. R.J.Patton, P.M. Frank, and R.N. Clark(eds.), Issues
of Fault Diagnosis for Dynamic Systems, Berlin:
Springer-Verlag,2000.

[30]. Schneider H & Frank P M, (1994), Fuzzy logic based
threshold adaptation for fault detection in robots,
Proc. of The Third IEEE Conf. on Control
Applications, Glasgow, Scotland, pp-1127-1132.

[31]. Schneider H & Frank P M, (1996), Observer-based
supervision and fault detection in robots using non-
linear and fuzzy-logic residual evaluation, IEEE
Trans. Contr. Sys. Techno. 4, (3), pp274-282

[32]. Sharif M A & Grosvenor R I, (1998), Process plant
condition monitoring and fault diagnosis, Journal of
Process Mechanical Engineering, 212, (1), pp13-
30.Shen Q Leitch R, (1993), Fuzzy Qualitative
Simulation, IEEE Trans. Sys. Man & Cybernetics,
SMC-23, (4), pp1038-1061.

[33]. Soliman A, Rizzoni G, Kim YW, (1999), Diagnosis of
an automotive emission control system using fuzzy
inference, Control engineering practice,

