
Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1233-1239 (2012)

1233

Analysis of Compute Vs Retrieve Intensive
Web Applications and Its Impact On The

Performance Of A Web Server

Syed Mutahar Aaqib
Department of Computer Science & IT, University of Jammu, Jammu-`180006, J&K (INDIA)

Email: syed.auqib@gmail.com
Dr. Lalitsen Sharma

Department of Computer Science & IT, University of Jammu, Jammu-`180006, J&K (INDIA)
Email: lalitsen.sharma@gmail.com

---ABSTRACT--
The World Wide Web (WWW) has undergone remarkable change over the past few years, placing substantially
heavy load on Web servers. Today’s web servers host web applications that demand high computational
resources. Also some applications require heavy database retrieval processing, making server load even more
critical. In this paper, performance of Apache web server running compute and retrieve-intensive web workloads
is analyzed. Workload files implemented in three dynamic web programming technologies: PERL, PHP and Java
Servlets are used with MySQL acting as a data source. Measurements are performed with the intent to analyze
the impact of application workloads on the overall performance of the web server and determine which web
technology yields better performance on Windows and Linux platforms. Experimental results depict that for both
compute and retrieve intensive applications, PHP exhibits better performance than PERL and Java Servlets. A
multiple linear regression model was also developed to predict the web server performance and to validate the
experimental results. This regression model showed that for compute and retrieve intensive web applications,
PHP exhibits better performance than Perl and Java Servlets.

Keywords - Web performance analysis, Web Servers, compute and retrieve intensive
--

Date of Submission: October 04, 2011 Date of Acceptance: December 02, 2011
--

1. INTRODUCTION

World Wide Web (WWW) has evolved from a static

content-distribution medium into a dynamic and interactive
medium, thereby facilitating the generation of dynamic
contents “on-the-fly” and giving the ability to personalize
web pages. But this advantage comes at a performance
cost. Over the past several years there has been a
substantial growth in the demand of computational
resources for supporting increasingly sophisticated data
processing applications. Contemporary applications
normally fall in the two categories, compute intensive,
which requires lot of computational resources and retrieve
intensive, which demand lot of database processing
[14,15,16].

In this paper, the impact of compute and retrieve intensive
applications on the performance of a web server on Linux
and Windows environments is examined. Applications

were developed using three dynamic technologies: PHP,
PERL and Java Servlets for both Linux and Windows
platforms. For retrieve intensive applications, MySQL [13]
was chosen data source as it is the most popular relational
database management system and acts as a core component
for both LAMP and WAMP web application software
stack [17]. Apache 2.2 was chosen for this study as it is the
most popular web server in the market and is used by most
of the sites1.
2. RELATED LITERATURE
In the recent years substantial amount of work has been
done to analyze the performance of web servers on
different architectures, but till date no work has been
reported in the literature which studied this problem.
Ramana et al. [1] performed application level
benchmarking under Windows and Linux environments
and found out that Apache on Linux yields better

1 URL:www.news.netcraft.com/archives/category/web-
serversurvey as accessed on 01 May 2011

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1233-1239 (2012)

1234

performance than Apache on Windows. Mendes et al. [2]
evaluated the performance of CGI, PERL, C++ and ASP
on the Jigsaw and IIS running on Microsoft Windows NT.
Their results depicted that small dynamic requests do not
degrade the performance whereas large dynamic web
applications have strong impact on the performance of a
web server. Kothari et al. [3] compared the performance of
Java Servlets, CGI and FastCGI and concluded that CGI
and FastCGI are faster than Servlets. Checchet et al. [4]
developed five different EJB applications to study the
performance and scalability of JBOSS and JOnAs
application servers. Checchet et al. [5] evaluated three
dynamic content generation mechanisms: PHP, Java
Servlets and EJB. Their results suggested that PHP is
more efficient that Java Servlets. Also EJB yielded lower
performance than both PHP and Servlets. Apte et al. [7]
used stress testing techniques to evaluate various web
technologies used for generating web content on dynamic
web platforms. Main aim of their work was to determine
how a simple and a complex application perform when
implemented using different web programming
technologies. Swales et al. [8] compared the performance
of three dynamic Web programming technologies (JSP,
ASP, ASP.NET) for multimedia image distribution. They
tested applications that distribute multiple images from an
Oracle 9i database unto web clients. Trent et al. [18]
compared the performance of JSP and PHP using
SPECweb2005benchmark on Apache and Lighttpd web
servers. Their results suggested there’s only 5-10%
difference in the throughput and performance between
these two technologies.
The work till date tries to determine which web technology
performs better under non-intensive/simpler workloads.
However, no work has been done to examine the impact of
the web technologies with respect to the class of the
workloads (compute/retrieve intensive). The aim of this
paper is to fill this void and study the impact of the
compute and retrieve intensive workloads on the overall
performance of the web server. The results of this paper
will help system administrators and web developers choose
a web technology that is best suited for compute and
retrieve intensive applications.

3. EXPERIMENTAL METHODOLOGY
The test-bed setup for the experiments is depicted in Fig.
1. It consists of two clients connected to a server via a
100Mbits/s Ethernet switch. The client machines are
running Scientific Linux CERN 5 (2.6.18). Each machine
has a single 2.0 GHz Intel processor with 1 GB of RAM
and uses “RAM-disk” of 128 MB for collecting
measurement statistics. The server machine in our test

environment is Intel Pentium I5 machine, with 2 GB of
RAM, running Scientific Linux CERN 5 (2.6.18) in case
of Linux experiments and Windows 2003 server in case of
Windows experiments. The hardware configuration is
identical to that of the clients.

3.1. PERFORMANCE TUNING
The number of available file descriptors was increased
from 1024 to 32,678 and the limit of the local port range
was also increased. TCP TIME_WAIT recycling was
enabled to free up sockets in a TIME_WAIT state more
quickly, thus allowing clients to generate and sustain high
request rate. Also, all the non-essential processes and
services on the server as well as client machines were
disabled. Also the web server was restarted before and
after each experiment.
Figure 1: Test-bed for the experiments.

3.2. CLIENT WORKLOAD GENERATOR
The httperf [9] is an open source benchmark developed by
David Mosberger at Hewlett-Packard Research Labs. The
httperf benchmark is a flexible HTTP client that requests a
file from a web server multiple times and for number of
parallel threads and then prints out detailed statistics. Its
source code was modified in order to print the server
response rate information more frequently. Thus the output
of the httperf provides information about TCP connection
rate, HTTP request rate and HTTP reply rates after every
one second during the experiments.
The server software used in the experiments is Apache 2.2.
a public domain web server, running in a stand-alone mode
on both Linux and Windows platform. Arlitt [11] and
Grottke et al. [12] in their work suggested that the two
configuration parameters for Apache web server,
MaxRequestsPerChild and MaxClients should be set to 0
and 250 respectively. Based on this insight, in the main
experiments the Apache web server was tuned by setting
MaxClients MaxRequestsPerChild to these values.

3.3. VALIDATION OF THE TEST ENVIRONMENT
In order to validate the request generation capabilities of
the test-bed, TUX web server [10] was used. The purpose
of this validation was to show that clients can generate and

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1233-1239 (2012)

1235

sustain high amount of requests rates during the
experiments, possibly large enough to saturate the web
server, and thus are not a bottleneck.
These tests were performed for a 1KB static file. Figure 2
shows the result for this experiment. This figure has three
sets of data plotted which includes average number of TCP
connections, average rate of HTTP requests and the
average number of HTTP responses.
The results depicted that clients were able to generate and
sustain workload of 10,000 requests per second for static
1kb file. Also the server platform and the network could
support up to 10,000 responses per second for a static 1
KB file. Thus, the achieved response rates lower than these
in the main experiments would indicate a bottleneck
related to the particular server software technology being
tested.

Figure 2: Experiment involving TUX web-server for
validation of test-bed.

3.4. EXPERIMENTAL DESIGN
The metrics viz: TCP connection rate, HTTP request rate,
HTTP reply rate, HTTP reply time were chosen in the
experiments.
Main experiment was designed for two types of workloads,
compute intensive and retrieve intensive. These workload
were implemented in PHP, PERL and Java Servlets and
were tested on both Windows and Linux environments. In
case of compute intensive workloads, two recursive
functions, one for Fibonacci series and other for
Ackermann function were used with varying values of n.
For these compute intensive workloads, requests to the
server were sent to the server based on the request rate as
shown in Table 1.
For retrieve intensive workloads, two test applications
were used. One sends MySQL connection establishment
‘connect’ calls to the server and then tears down the
connection and the other one connects to the MySQL
server through a “connect” call and then performs a
SELECT command on a database tables. These test

applications were developed using PERL, PHP and Java
Servlet technologies, for both Linux and Windows
environments. Request rates for this experiment are shown
in TABLE 2.

4. RESULTS AND DISCUSSIONS
This section presents the results of all the main
experiments. The first and second part of this section
discusses the results of compute intensive workloads and
retrieve intensive workloads respectively.

TABLE 1: Factors and levels for compute intensive
experiments

TABLE 2: Factors and levels for retrieve/database
intensive experiments.

In addition, we analyze the performance of PERL, PHP
and JAVA server technologies on Linux and Windows
platforms for above said workloads.

4.1. COMPUTE INTENSIVE WORKLOADS.
Figure 3 presents the results of the experiment involving a
recursive implementation of Fibonacci number series with
a considerable small value for n. This workload was not so
much compute-intensive compared to the workload
presented in the next part of this section and doesn’t fall in
the category of compute intensive function. Nevertheless,
results depicted that all the implementations of this
workload perform better on Linux than on Windows
environment and PERL leads the achieved response rate
on Linux platform by 1935.5 response rate/sec for the
target rate of 2000 requests followed by 1695.9, 1595.8
responses/sec for PHP and Java respectively. On windows
platform, Perl also performs better than PHP and Java.
Similar results were found for Fibonacci number series
with large value of n. Figure 4 shows the results; here also
Perl performs better than PHP and Java on both platforms.
So for web applications where the demand of computation
is not much, Perl can be a good option. Next experiment

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1233-1239 (2012)

1236

involved a compute intensive recursive implementation of
ackermann function A(m, n), Figure depicts the results for
considerable small values of (m, n). As ackermann
function[6] is a total computable function than fibonacci
series, better insights can be gained from this experiment.

 A(m,n) = n+1 if m=0

 A(m-1, 1) if m >0 and n=0
 A (m-1, A(m, n-1)) if m >0 and n >0

Results of this experiment as shown in Fig 4,depict that
PHP on Linux followed by PHP on Windows exhibit
better performance that Java and Perl on both platforms.
Also Java performs better than Perl in both environments.

Figure 3: Results of experiments for Fibonacci number
workload Small(n)

Figure 4: Results of experiments for Fibonacci number
workload Large(n)

Figure 5 depicts the results for considerable large values of
(m, n) for Ackermann function. Here as the value of (m, n)
was somewhat large than that of the previous experiment,
CPU became a bottleneck as the all the implementations of

this workload were caught in deep recursions. In this
experiment too, PHP exhibited better performance than the
other technologies.
4.2 RETRIEVE INTENSIVE WORKLOADS
These set of experiments were performed to effectively
analyze the performance of retrieve intensive workloads
and to determine the affinity of various web technologies
with Apache web server. Data source used is MySQL
database on both Linux and Windows environments. Two
set of experiments were conducted for this workload type.
One set comprised of test application used to examine the
impact of simultaneous “connect” calls on the MySQL
database and other one performed connection
establishment “connect” call followed by a SELECT
operation on a predetermined set of tables.

Figure 4: Results of experiments for Ackermann series
workload-small(n,m).

Figure 5: Results of experiments for Ackermann series
workload-large (n,m).

 Results of the first set of experiments are shown in Figure
6, Here also, PHP on Linux exhibited better performance
than all of the other web technologies. Next, PHP on
windows platform performed better than Java and Perl.
Interestingly Perl which depicted highest performance in

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1233-1239 (2012)

1237

case of Fibonacci number series exhibits lowest
performance in case of both compute and retrieve intensive
applications. In all of the above set of experiments, it was
found that Apache web server performs better on Linux
platform than on Windows. Ramana et al. [1] has reached
to the same conclusion that overall Linux performs better
than Windows. It was also found that the affinity of PHP
with Apache web server on both the platforms, is better
than Java and Perl for both compute and retrieve intensive
applications.

5. PERFORMANCE MODEL
This section presents a multiple linear regression model
[19] developed using the results obtained in the previous
section to predict the performance of a web server for
different workload types. A multiple linear regression
model enables one to predict a response variable y as a
function of k predictor variables x1, x2,…,xk, using a linear
model of the following form:

y = b0 +b1 x1 +b2 x2 +…+ bk xk+ e

Where, b0, b1, b2 ,…, bk are k+1 fixed parameters and e
is the error term.
In vector notation, the model is represented as:

y = Xb+e,

where, y is a column vector of n observed values of y,

 X is a (n,k+1) matrix whose (i, j+1)th element
Xi,j+1 = 1 if j=0 else xij,
 b is a column vector with k+1 elements and
e is also a column vector of n error terms.

This model is based on 7 quantitative and categorical
predictors: Target request rate, TCP connection rate,
achieved request rate and achieved reply rate are
quantitative predictors where as workload type, operating
system and dynamic web technology (i.e. PHP, Perl,
JAVA) are categorical predictors. The categorical
predictor variable for workload-type takes two values:
compute intensive, retrieve intensive, for operating system
it also takes two values: SLC Linux and Windows and
finally for dynamic web technology it takes three values:
PHP, Perl and Java. Based on the multi linear regression
model in [19], the coefficient of determination for this
model is 0.9776. Thus the regression explains 97.76% of
the variance of the reply rate in our model.
Figure 8 and Figure 9 depicts the measured and modeled
reply rates using the multiple linear regression model for
LAMP and WAMP experiments. Each graph in figure 8
and 9 represents the peak reply rates achieved for compute

and retrieve intensive applications for a particular web
technology i.e. PHP, Perl and Java. Figure 8 shows the
comparative results of measured and modeled reply rates
for experiments involving Linux platform, whereas Figure
9 shows the comparative results of measured and modeled
reply rates for experiments involving Windows platform.
These results show that our model predicts the
performance of compute and retrieve intensive application
for all three technologies i.e. PHP. Perl and JAVA within
8- 10% of the measured values. It is thus assumed that
differences of 8-10% in predictions made by the multiple
linear regression model are significant. The model thus
validates the outcome of the experiments, which clearly
shows that, for compute and retrieve intensive application
PHP is a better choice compared to Perl and Java.

Figure 6: Results of experiments for first retrieve intensive
workload.

Figure 7: Results of experiments for second retrieve
intensive workload.

6. CONCLUSION
In this paper, the impact of compute and retrieve intensive
applications on the performance of a web server on Linux
and Windows platforms is analyzed. Three web
technologies viz. PHP, PERL and JAVA were used

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1233-1239 (2012)

1238

to develop the test applications for both classes of
experiments. Results were validated by repeating the same
experiment under same environment multiple times and
taking the mean values. Results revealed that for trivial
applications with no large computational requirements,
PERL performs better than the other two technologies. But
in case of compute and retrieve intensive applications, it
was found that PHP on Linux exhibits better performance
than Java and Perl. A multiple linear regression model was
also developed to predict the web server performance and
to validate the experimental results. In other words, as
request rates increases, applications developed using PHP
are more efficient because its affinity with MySQL is more
as compared to PERL and JAVA. This regression model
also showed that for compute and retrieve intensive web
applications, the performance of PHP is better than that of
Perl and Java Servlets. Finally it was concluded that
LAMP is a reliable and effective platform than WAMP in
terms of performance.

Figure 8: Target rate/Achieved reply rate. Performance
predicted by our multiple linear regression model for
experiments involving Linux platform.

Figure 9: Target rate/Achieved reply rate. Performance
predicted by our multiple linear regression model for
experiments involving Windows platform.

ACKNOWLEDGMENTS
The authors are thankful to Prof. Devanand, Head,
Department of Computer Science and IT, University of
Jammu, for his kind support.

REFERENCES
[1] Ramana U. V., Prabhakar, T. V., Some Experiments

with the Performance of LAMP Architecture.
Fifth International Conference on Computer and
Information Technology, 2005, 916-920.

[2] Mendes M. A., Almeida V. A., Analyzing the impact of
dynamic pages on the performance of web servers.
In Proceedings of the Computer Measurement
Group Conference, Anaheim, CA, 1998, 539-547.

[3] Kothari B., Claypool M., Dynamic Web pages:
performance impact on Web servers. Internet
Research, 11(1) 2001, 18–25.

[4] Checchet E., Marguerite J. and Zwanepoel W.,
 Performance and scalability of EJB applications.
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2002.

[5] Checchet E., Chanda A., Elnikety S., Marguerite J.,
and Zwaenepoel W., Performance comparison of
middleware architectures for generating dynamic
Web content. In Proceedings of the ACM/IFIP/
USENIX International Middleware Conference
Brazil, 2003, 16-20.

[6] Wichmann B. A.: How to call procedures, or second
thoughts on Ackermann's function. Software:
Practice and experience 7(3), 1977, 317–329.

[7] Apte V., Hansen T., and Reeser, P., Performance
comparison of dynamic web platforms. Computer
Communications 26(8), 2003, 888–898.

[8] Swales D., Sewry D., and Terzoli A., A Performance
Comparison of Web Development Technologies to
Distribute Multimedia across an Intranet. In
Proceedings of Southern African Tele
communication Networks and Applications
Conference (SATNAC), 2003.

 [9] Mosberger D. Jin T., httperf: A Tool for Measuring
Web Server Performance. The First Workshop on
Internet Server Performance, Madison, WI, 1998,
59-67.

[10] Lever C., Eriksen M., and Molloy S.: An analysis of
the TUX web server. Technical report, University of
Michigan, 2000, 00-8

[11] Grottke M., Li L., Vaidyanathan K., and Trivedi K.S.:
Analysis of software aging in a web server. IEEE
Transactions on Reliability, 55(3) 2006, 411-420.

Int. J. Advanced Networking and Applications
Volume: 03, Issue: 04, Pages:1233-1239 (2012)

1239

[12] Arlitt M., Williamson C., Understanding Web server
configuration issues. Software: Practice and
Experience. 34(2), 2004, 163–186.

[13] MySQL AB. MySQL: The World’s Most Popular
Open Source Database. www.mysql.org. 2005.

[14] Che S., Li J., Lach J., and Skadron K., Accelerating
compute intensive applications with GPUs and
FPGAs. Proc. of the 6th IEEE Symposium on
Application Specific Processors, 2008.

[15] Gorton, Greenfield P., Szalay A., and Williams R.,
Data-Intensive Computing in the 21st Century. IEEE
Computer, (41) 4, 2008, 30–32.

[16] Apparao, P., Iyer, R., Zhang, X., Newell, D.,
Adelmeyer T., Characterization & analysis of a
server consolidation benchmark. Proceedings of the
fourth ACM SIGPLAN/SIGOPSI international
Conference on Virtual Execution Environments,
USA, 2008, 21–30.

[17] Dougherty D., LAMP: The Open Source Web
Platform. www.onlamp.com/pub/a/onlamp/2001/0
1/25/lamp.html, 2001 as accessed on May 2011.

[18] Trent S., Tatsubori M., Suzumura T., Tozawa A., and
Onodera T., Performance comparison of PHP and
JSP as server-side scripting languages. In Proc. 9th
International Middleware Conference.
ACM/IFIP/USENIX, Springer, 1(5), Belgium, 2008,
164–182.

 [19] Jain R., The Art of Computer System Performance
 Analysis, (John Wiley & Sons Inc. 1991).

Authors Biography

Syed Mutahar Aaqib is a research scholar
in the Department of Computer Science &
IT, University of Jammu. His research
interests are in the field of performance
and scalability analysis of web servers.

 Dr. Lalitsen Sharma obtained his PhD
degree from Guru Nanak Dev University,
Amritsar. He is working as an Associate
Professor in the Department of Computer
Science & IT, University of Jammu. His
research interests are in the field of web

services and ‘Network Applications’ Security.

