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--------------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
We can generate a secret key using neural cryptography, which is based on synchronization of Tree Parity Machines (TPMs) 
by mutual learning.  In the proposed TPMs random inputs are replaced with queries which are considered.  The queries depend 
on the current state of A and B TPMs.  Then, TPMs hidden layer of each output vectors are compared. That is, the output 
vectors of hidden unit using Hebbian learning rule, left-dynamic hidden unit using Random walk learning rule and right-
dynamic hidden unit using Anti-Hebbian learning rule are compared. Among the compared values, one of the best values is 
received by the output layer.  The queries fix the security against majority flipping and geometric attacks are shown in this 
paper.   The new parameter H can accomplish a higher level of security for the neural key-exchange protocol without altering 
the average synchronization time. 
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1. Introduction 

Neural cryptography is a method for generating secret 
information over a public channel.  Before two partners A 
and B can exchange a secret message over a public 
communication channel, they have to agree on a secret 
encryption key.  Using number theoretic methods, such keys 
can be constructed over public channels without previous 
secret agreements of the two partners.  The algorithm as well 
as the complete information passed between the partners is 
known to a possible attacker E; nevertheless the final key is 
secret, it is known to the two partners A and B only and an 
attacker E with limited computer power cannot calculate the 
key.  The method is based on the computational difficulty of 
factorizing large numbers or calculating the discrete 
logarithm of large numbers [8]. 
 
Two identical dynamical systems, starting from different 
initial conditions can be synchronized by a common input 
values which are coupled to the two systems.  Two networks 
which are trained on their mutual output can synchronize to a 
time-dependent state of identical synaptic weights.  The 
networks receive a common input vector after calculating 
their outputs and update their weight vectors according to the 
match between their mutual outputs in every time step.  The 
input or output relations are exchanged through a public 
channel until their weight vectors are identical and can be 

used as a secret key for encryption and decryption of secret 
messages.  The random inputs are replaced by queries in this 
network.  It is based on exchanging inputs between A and B 
which is correlated to weight vectors of the two networks 
[11]. 
 
The properties of the synchronization process depend on the 
synaptic depth L and queries.  Hence there is an additional 
parameter H, which fixes the absolute value  hi of the local 
fields in the TPMs generating the current query.  As the 
prediction error of a hidden unit, left-dynamic hidden unit 
and right-dynamic hidden unit is a function of both the 
overlap ρi and the local field hi, the partners modify the 
probability of repulsive steps Pr(ρ) if they change H.   The 
partners A and B are able to adjust the difficulty of neural 
synchronization and learning [7]. 
 
This paper is organized as follows.  In Section 2, the basic 
algorithm for neural synchronization with queries is given.  
Also lower layer spy unit, upper layer spy unit, definition of 
the order parameters and transition probabilities of proposed 
TPMs are explained.  In Section 3, the generation of queries 
is described.  Synchronization time of two TPMs is briefly 
explained in Section 4.  The security against known attacks 
with success probability of an attacker is presented in Sec. 5.  
In Section 6, the advanced attacks are discussed.  Finally, 
conclusion is shown in Section 7.  
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2.   Neural Synchronization 
 
The weight vectors of the two neural networks begin with 
random numbers, which are generated by Pseudo-Random 
Number Generators (PRNGs).  In these networks, random 
inputs are replaced by queries.  That is A and B choose 
alternatively according to their own weight vectors.  The 
partners A and B receive a common input vector at each 
time; their outputs are computed and then communicated 
over public channel [8].  If they agree on the mapping 
between the current input and the output, their weights are 
updated according to the learning rule.   
 
2.1   A Structure of Tree Parity Machine 
 
 The TPMs consist of K-hidden units, Y-left 
dynamic hidden units [3]  and Z-right dynamic hidden units 
[4], each of them being a perceptron with an N-dimensional 
weight vector w. The lower layer spy unit (ϑ) is associated 
with the N-input units x.  The upper layer spy unit (ξ) is 
associated with the hidden units (σ) [5], left-dynamic hidden 
units (δ), right-dynamic hidden units (γ) and output unit (τ). 
 
 The lower layer spy unit receives the input from the 
N-input units.  The upper layer spy unit receives the input 
from the Y-left dynamic hidden units, Z-right dynamic 
hidden units, K-hidden units and output unit.  The network 
structure of this TPM is shown in fig.1. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1:  A structure of Tree Parity Machine with K=3, 
Y=3, Z=3, ϑϑϑϑ=1, ξξξξ=1 and N=4. 
 
 

      The components of the input vectors x are binary: [9] 
 

xij ∈ { -1, +1}, xim ∈ {-1, +1}, xik ∈  { -1, +1}          (1) 
 
and the weights are discrete numbers between -L and +L : 
 wij   ∈  { -L, -L+1,…,0,… , L-1, L },   
 wim ∈  { -L, -L+1,…,0,… , L-1, L }, 
 wik  ∈  { -L, -L+1,…,0,… , L-1, L }.            (2) 
 
  where L is the depths of the weights of the networks [2]. 
 
  
The TPM receives the input vectors using queries.  These 
input vectors are correlated with the present weight vector 

( )tkw .  At odd time steps, the partner A generates an input 

vector which has a certain overlap to its weights A
kw .  At 

even time steps, the partner B generates an input vector 
which has a certain overlap to its weights B

kw .  It is based on 
the queries to improve the security of the systems.  
 
 The index i = 1,…..,K denotes the ith  hidden unit of 
TPM , m=1,…..,Y denotes the mth left-dynamic hidden  unit 
of the TPM, k=1,…..,Z  denotes kth right-dynamic hidden  
unit of the TPM and j =1,….,N denotes the N input units [6].   
 
 The different transfer functions for hidden layer are 
given below:   

 
ij

1
= sign   x

N

i ij
j

wσ
=

 
• 

 
∑                     (3) 

   

 
1

tanh
N

i im im
m

w xδ
=

 = • 
 
∑                          (4) 

   

 
1

arctan  
N

i ik ik
k

w xγ
=

 = • 
 
∑

                    
    (5) 

 
 where equation (3) is the transfer function of the 
hidden unit, the equation (4)  the transfer function of the left-
dynamic hidden unit and  the equation (5) the transfer 
function of the right-dynamic hidden unit. 
 

The transfer functions for lower layer spy unit and 
upper layer spy unit are given below: 
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 where the equation (6) is the transfer function of the 
lower layer spy unit and equation (7) the transfer function of 
the upper layer spy unit. 
 
 The K-hidden units of σi, Y-left dynamic hidden 
units [3] of δi and Z-right dynamic hidden units [4]  of γi   
define common output bit of hidden layer of the network and 
are given by: 
 

 
1

   
K

a i
i

β σ
=

= ∏                (8) 

 
1

   
Y

b i
i

β δ
=

= ∏                    (9) 

 
1

   
Z

c i
i

β γ
=

= ∏               (10)  

 
where equation (8) is the output for the hidden units, 

equation (9) the output for the left-dynamic hidden units  and 
equation (10) the output for the right-dynamic hidden units.  

 
 The two TPMs compare the hidden layer’s output 
bits (hidden, left-dynamic and right-dynamic hidden units) 
and then update the weight vector to the output unit  as well 
as partners A and B that are trying to synchronize their 
weight vectors: 
   

 , ( , ,  )A B
i a b ccompψ β β β=           (11) 

     
A B

ij x  A AA
i ij iwφ τ ψ=          

          (12)     

 
B A

ij x  B BB
i ij iwφ τ ψ=

           
(13)     

  
 where equation (11) represents comparison of the 
output of hidden, left-dynamic and right-dynamic hidden 
units of A and B.  The equation (12) and (13) represent 
output of hidden, left and right-dynamic hidden units of A 
and B respectively.   
 

1

   
K

i
i

τ φ
=

= ∏                              (14) 

 
 
The equation (14) represents the output vector of the 

output unit of the TPM. 
 

 
2.2   Learning Rules 
 
 The partners A and B initialize their random number 
of weight vectors before the start of the training period.  At 
each time step t, a public input vector is generated and the 

bits τA and τB are switched over the public channel.  In the 
case of indistinguishable output bits τA = τB, each TPM 
adjust those of its weight vectors for which the hidden unit, 
left-dynamic hidden unit and right-dynamic hidden unit is 
identical to the output BABA // τφ = .  These weights are 
adjusted according to a given learning rules.  They are 

 
(a) Hebbian Learning rule for hidden units: 

A
i i( 1) = w ( ) + x ( ) ( )A A A A A B

i iw t t τ τ φ τ τ+ Θ Θ  
B
i i( 1) = w ( ) + x ( ) ( )B B B B A B

i iw t t τ τ φ τ τ+ Θ Θ      (15) 
 
 where Θ is the Heaviside step function, if the input 
is positive then the output is 1 and if input is negative then 
the function evaluates to 0.           
(b) Random walk learning for left-dynamic hidden units: 

A
i i( 1)  = w ( ) + x ( ) ( )A A A A B

i iw t t τ φ τ τ+ Θ Θ    
B
i i( 1) = w ( ) + x ( ) ( )B B B A B

i iw t t τ φ τ τ+ Θ Θ        (16) 
 
(c) Anti-Hebbian learning for right-dynamic hidden units: 

A
i i i( 1) = w ( ) - x ( ) ( )A A A A B

i iw t t φ τ φ τ τ+ Θ Θ  
B
i i( 1) = w ( ) - ( ) ( )B B B A B

i i iw t t xφ τ φ τ τ+ Θ Θ        (17) 
 
2.3  Order Parameters  
 

  The process of synchronization itself can be 
described by standard order parameters.  These order 
parameters are: 

 
         

, ,

A AA
j ki= = =

A AA
ji kQ Q Qi j kN N N

W W W WW W ⋅ ⋅⋅             (18) 

  
 The equation (18) represents weight distribution of 
hidden units, left-dynamic hidden units and right-dynamic 
hidden units of A’s TPM. 
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j, , ,i k= ,  =  =,

BB B
jA B A B A Bi k
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(19) 
   
 The equation (19) represents overlap between two 
hidden units, two left-dynamic hidden units and two right-
dynamic hidden units of A and B respectively.  
 
 The distance between two corresponding hidden 
unit, left-dynamic hidden units and right-dynamic hidden 
units are defined by the overlap is given below: 
   
 

,, ,
,

A BA B A B
jA B i k
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Q Q Q Q Q Q
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2.4 Transition Probabilities 
 
 A repulsive step can only occur in the ith hidden 
unit, jth left-dynamic hidden unit and kth right-dynamic 
hidden unit, if the two corresponding outputs φi are different.  
The probability for this event is given by the well-known 
generalization error for the perceptron: [1] 
  

 ijk
1  arccos ( )i

pε ρ
π

=           (21) 

 
 where equation (21) represents the generalization 
error for hidden, left-dynamic and right-dynamic unit of two 
TPMs. 
 
 The quantity i

ρε is a measure of the distance 
between the weight vectors of the corresponding hidden 
units, left-dynamic hidden units and right-dynamic hidden 
units and these values are independent. The values i

ρε  
determine the conditional probability Pr for a repulsive step 
and Pa for a attractive step between two hidden units, left-
dynamic hidden units and right-dynamic hidden units given 
identical output bits of the two TPMs.   In the case of 
identical distances i

ρε ε= , the values of K, Y and Z  are 
found as K=3, Y=3 and Z=3. 
 

 
9 3 2

9 3 2

1 (1 ) 3(1 )
2 (1 ) 9(1 )aP ε ε ε

ε ε ε
− + −=
− + −

          (22)      

      
3 2

9 3 2

6(1 )   
3(1 ) 9(1 )rP ε ε

ε ε ε
−=

− + −
               (23) 

 
 The equation (22) and (23)  represent probability of 
attractive and repulsive steps between two hidden units, two 
left-dynamic hidden  units  and  two right-dynamic hidden 
units of A and B  respectively. 
 

The attacker E can assign a confidence level to each 
output ,  E E E

i i iandσ δ ϒ  of its hidden units, left-dynamic 
hidden units and right-dynamic hidden units.  For this task 
the local field is given by: 

  

 
 + +j ji i k k

ijk

w xw x w xh
N N N

⋅⋅ ⋅=             (24)  

 
where equation (24) represents the local field of 

hidden unit, left-dynamic and right-dynamic hidden units of 
an attacker‘s TPM. 

 
  From the below Fig. 2, we are able to predict the 
probability of repulsive steps occur more frequently in E’s 
TPM than in A’s and B’s for equal overlap 0 < ρ < 1.  So, the 

partners A and B have a clear advantage over a simple attack 
in neural cryptography.  
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Fig. 2:  Probability ( )B

rP ρ of repulsive steps for 
synchronization with mutual interaction under the 
condition A Bτ τ= .  
 
  
 Then the prediction error of the probability of 
different output bits for an input vectors ‘x’ inducing a local 
field hijk is given below: 
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1( ) 1
2 2(1 )

ijkijk
ijk ijk

iijk

h
h erf

Q
ρ

ε ρ
ρ

  
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         (25) 

 
 where equation (25) represents prediction error of 
the local field of hidden units, left-dynamic and right-
dynamic  hidden units of an attacker’s  TPM. 
  
3. Generation of Queries 
 
  As both inputs xi,m and weights wi,m are discrete, 
there are only (2L+1) possible solutions for the product xi,m ⋅ 
wi,m [7].   Therefore, a set of input vectors consisting of all 
permutation, which do not exchange hi, can be depicted by 
counting the number ci,l of products with xi,m ⋅ wi,m = l .  
Then the local field is given by: 

( )1
( ) ( ) ( ), , , , , ,1

L
h l c c l c c l c cijk i l i l j l j l k l k llN

∑= − + − + −− − −=
 
 

(26) 

 
 where equation (26) is the number of inputs and 
weights in the local field of  TPM. 
 
 The sum , , , , , , ,ijk l i l i l j l j l k l k ln c c c c c c− − −= + + + + +   is equal to 

the number of weights with   ,w li j =  and thus independent 
of ‘x’.  Accordingly, one can write hijk as a function of only L 
variables, because the generation of queries cannot change 
‘w’: 
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L
h l c n l c n l c nijk i l i l j l j l k l k llN
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 
 

(27) 

 
 where equation (27) is the inputs and sum of current 
weights vectors of the local field of two TPMs. 
 
 The inputs vectors ‘x’ is connected with zero weights 
which are selected by randomly, because they do not 
determine the local field.  The other input bits xi,m are divided 
into L groups according to the absolute value ,wi ml =  of 
their corresponding weight.   In each group, ci,l inputs are 
selected randomly and set to xi,m=sign(wi,m).  The remaining 

lili cn ,, −  input bits are set to  xi,m = -sign (wi,m). 
 
 The maximum possibilities of the weight vectors of 
an attacker’s TPM is given by: 
 
   
 ( )  

m ax (4 2) K Y Z Nl L + + •= +             (28) 
 
Then 
   
 maxln  ( ) ( )   ln(4L+2)l K Y Z N= + + ⋅               (29) 
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Fig. 3:  The possible values of lmax of the weight vectors 
of an attack�s TPM. 
 

 From the above fig.3, we are able to determine a 
large number of possibilities of weight vectors against an 
attacker, in which weights are selected by queries.  In each 
time step, either A or B generates the input vectors.  The 
attacker E cannot easily gain the weight vector and useful 
information from analyzing queries.  
 
4.  Synchronization Time 
  
The generation of the inputs vectors xij has to be changed 

during queries synchronization.  The partner A or B use the 
generation of queries (shown in Section 3) at each time step 
to generate K input vectors xk, which result in /A B

ijkh H≈ ± .  
Both partners calculate the output of their TPMs with 
queries.  Then the exchange of τA and τB  the Hebbian 
learning rule is used to update the weights.  This leads to 
synchronization after tsync steps. 
 
 The dependence on the synaptic depth L of tsync, 
which is induced by two effects 
 

1. The control signals σi, δi, γi and τ are neglected, if 
weight vectors can be described as random walk 
with reflection boundaries: [8]. 
  2

synct L∝     (30) 
 

2. The probability of repulsive steps Pr depends on the 
overlap ρijk, but also on the quantity /ijk ih Q  

using queries.  Assuming uniformly distributed 
weights as given below: 

  

 2
ijk

1 1 1 w ( 1)
3 3ijk ijkQ w L L L

N
= • = + ≈    (31) 

 
 Therefore the length of the weight vectors 
 improves proportional to L. 
 
    
 ( )H Lα ϑ ξ= + +           (32) 
 
where α is the rescaled field of H/L. L is the synaptic depth 
of TPM, ϑ is the lower layer spy unit vector and ξ is the 
upper layer spy unit vector. 
 
 In eqn. (30) and (31), we can rescale tsync in order to 
obtain functions fL(α), which are nearly independent of the 
synaptic depth in the case L >>1:  
 
    

 2  = Lsync L
Ht f
L

 
 
 

            (33) 

  
 The function of fL(α) converges to a universal 
scaling function f(α) in the limit L→∞. 
    
 ( ) lim  ( )LL

f fα α
→∞

=           (34) 

 
 
  The distance  ( ) ( )Lf fα α−  shrinks proportion to   

(L – 1).  Therefore the universal function fL(α) can be  
found out  by finite-size scaling. 
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5. Security against Known Attacks 
 
 The neural key exchange protocol using queries is 
efficient, secure against the attacks.  The different values of 
the local field influence the security of the system.  The 
results impose further restrictions upon the usable range of 
the parameter H [7, 8]. 
 
5.1 Success Probability 
 
 The two partners A and B use queries for the neural 
key-exchange.  The success probability strongly depends on 
the parameter H [10].  This model is suitable for both the 
majority and the geometric attack. 
     

 
1

1 exp( ( ))EP
Hβ µ

=
+ − −

                   (35) 

 
two parameter β and µ is a suitable fitting functions for 
describing PE as a function of H. 
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Fig. 4:  Success probability of the Majority Flipping 
Attack as a function of H. Symbols denote the simulations 
results for K = 3, Y=3, Z=3, ηηηη=3,  M = 100 and N = 1000 
(H= η+ 0.45 * L). 
 
 The position  µ of the smooth step increases linearly 
with the synaptic depth L as given below: 
   
 s Lµ α η= + ∂                (36) 
 
 The parameter αs is the maximum  α for security 
and η is the number of hidden layer (hidden unit, left-
dynamic and right-dynamic hidden units) and ∂ depend on 
the learning rule and the attack. 
 
Combined eqn. (35) and (36) yields: 
 
 1

1 exp( )  exp( ( ))E
s

P
Lβη β α α

=
+ − ∂ − −

          (37) 

 

for the success probability of any known attack. 
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Fig. 5: Success probability of the Majority Flipping 
Attacks depends on the synaptic depth of L.  Symbols 
denote the simulations results for        K = 3, Y=3, Z=3, 
ηηηη=3, M = 100 and N = 1000 (αs=0.45, ∂=0.40, β=8.1). 
 
 The partner A and B choose /H Lα =  according to 
the condition sα α< , PE vanishes for L→∞, its asymptotic 
behavior is given by: 
 
 PE  ∼  ( )s Le e β α αβ η − −− ∂           (38) 
 
 Hence the success probability PE decreases 
exponentially with increasing synaptic depth of L 
  
 PE   ∼  0( )y L Le − −                    (39) 
  
6.  Advanced Attacks 
 
 The attacker may improve the success probability PE 
by using additional information exposed through the 
algorithm generating the input vectors.  The two approaches 
are  
 

1. The attacker E could use to improve the internal 
representation of the absolute local 
field

1 2( , ,...., )E E E
Kσ σ σ ,

1 2( , , ...., )E E E
Kδ δ δ and 

1 2( , ,...., )E E E
Kγ γ γ  in the geometric correction. 

 
 

2. Each weight vector w is correlated to the 
corresponding input vector x of the generating 
network. 
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Fig. 6: the Average success probability of Majority 
Flipping Attack as a function of H. Symbols denote the 
simulations results for K = 3, Y=3, Z=3, ηηηη=3,  M = 100 
and N = 1000. 
 
6.1   Known Local Field 
 
 The absolute local field value in either A’s or B’s 
hidden units, left-dynamic units and right-dynamic units is 
given by H using queries and E knows the local fields E

ih  in 
attacker’s  TPM.  

 
1

AE
i
AE 2 A
i i

6 H( ) 1 exp   
1 ( ) Q

E
iE A

i i E
i

h
P

Q
ρφ φ η
ρ

−
   
   ≠ = +

  − 
   

   (40) 

 
 From the Fig.6, we are able predict the prediction 
error of the local field E

ih  is increased against the geometric 
attack. 
 
 As there is no qualitative difference compared to 
synchronization with random inputs, it is not possible to 
improve the geometric attack by using H as additional 
information. 
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Fig. 6: Prediction error P

iε as  a function of the local field 
E
ih  for A

iQ =1, E
iQ =1 and ρρρρ=0.5. 

  
 
 

6.2 Information about weight vectors 
 
 The queries give E as additional information about 
the weight vectors in A’s and B’s TPMs while H cannot be 
used directly in the geometric attack [7].  The absolute local 
field  hijk  for synchronization with queries is lower that the 
average value. 
   

 2
   0 .7 8i jk

ijk ijk

Q
h Q

η
π

= ≈           (41) 

 
observed for random inputs.  Therefore the overlap: 
        

,
1

3
ijk ijk ijk

ijk in
ijk ijk ijk jki ijk

w x h
w w x x N Q

ρ
•

= =
• •

        (42) 

 
between input vector and weight vector converges to zero in 
the limit N→∞, even if queries with 0< hijk <∞ are used.  
Consequently, xijk and wijk are nearly perpendicular to each 
other, so that the information exposed by queries is 
minimized. 
 
 A given value of H the number of weight vectors, 
which are consistent with a given query is still exponentially 
large. 
 
7. Conclusion 
 
 In the proposed TPMs, we trained the three transfer 
functions in the hidden layer.  That is, hidden unit using 
Hebbian learning rule, left-dynamic hidden unit using 
Random walk rule and right-dynamic hidden unit using Anti-
Hebbian learning rule included with queries.  Also, the 
queries increase the probability of repulsive steps for an 
attacker during the synchronization.  In addition, the method 
receives a new parameter, which can be adapted to give 
optimal security.  The attacker E is at a disadvantage 
compared to A and B because E needs a higher absolute 
value of the local field than the partners in order to 
synchronize on average.  Hence, it is possible to adjust the 
new parameter H combined with lower layer spy unit vector 
and upper layer spy unit vector. The partners A and B 
synchronize fast, but E is not successful regardless of the 
attack method. 
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