
Int. J. Advanced Networking and Applications
Volume: 01, Issue: 04, Pages: 210-216 (2009)

210

---ABSTRACT--
The RSA cryptosystem, invented by Ron Rivest, Adi Shamir and Len Adleman was first published in the August 1978
issue of ACM[4]. The cryptosystem is most commonly used for providing priva cy and ensuring authenticity of digital data.
The security level of this algorithm depends on chooing two large prime numbers. But, to handle large prime in personal
computer is huge time consuming. Further, each and every compiler has a maximum limit to integer handling capability.
In this paper, an approach has been made to modify trial division technique for implementation of RSA algorithm for large
numbers beyond the range of a compiler that has been used to implement it. The time complexity of this modified trial
division method has been calculated using personal computer, at the end for large integer.

Keywords - RSA cryptosystem, Prime Number, Trail division, Time Complexity.

--
 Date of Submission: December 03, 2009 Revised: January 30, 2010 Accepted: February 17, 2010
--

1. INTRODUCTION
he requirements of information security within an
organization have undergone two major changes in the

last few decades. With the introduction of the computer the
lead of automated tools for protecting files and other
information stored on the computer became evident,
especially the case for a shared system. No one can deny the
importance of security in data communication and
networking. Security in networking is based on
cryptography [7] [8], the science and art of transforming
messages to make them secure and immune to attack. The
RSA algorithm is the most popular and proven asymmetric
key cryptographic algorithm [3]. For larger the primes [9],
tougher is the factorization [1], [2]. This makes the RSA
secure. From the study, it is evident that lots of work has
been done to detect and handle large prime in RSA algorithm
[12]. One of them is trail division method. In this paper, some
modification has been done on trail division method. The
first requirement of RSA algorithm is to choose two prime
numbers. It can be done by taking two numbers as string and
to check whether they are prime, modified trial division
algorithm can be used for this purpose. To do this, first

requirement is to requirement compute the length of the
string, if it is less than 2*n-6 where n denotes the maximum
number of decimal digits that a particular compiler supports
then to convert the string into array of integers else to
subtract iteratively the numbers for which the given string
has to be compared until the reminder is less than the
number which is the required modulus. If all the moduli
computed are non-zero then the number is prime. After
getting the two primes the product n=p*q is computed by
means of adding the partial products. For a chosen e the
gcd(e, f) is computed. If it is equal to 1 then d is generated
else the user is asked to choose another e. Finally, by using
p,q,n,e and d RSA algorithm has been developed. This
modified trial division method will be much useful in
handling large primes to be used in RSA.

2. RSA ALGORITHM
The RSA algorithm involves three steps: key generation,
encryption and decryption [10].
2.1 Key Generation
RSA involves a public key and a private key. The public key
can be known to everyone and is used for encrypting
messages. Messages encrypted with the public key can only

Modified Trail division for Implementation of
RSA Algorithm with Large Integers

Satyendra Nath Mandal
Dept. of I.T, Kalyani Govt. Engg College, Kalyani ,Nadia(W.B),India

Email: satyen_kgec@rediffmail.com
Kumarjit Banerjee

CSE, Kalyani Govt. Engg College, Kalyani, Nadia(W.B),India
Email: kumarkgec123@gmail.com

Biswajit Maiti
Dept. of Mathmatics, Kalyani Govt. Engg College, Kalyani ,Nadia(W.B),India

Email: bmkgec@gmail.com
J. Palchaudhury

Dept. of I.T, Kalyani Govt. Engg College, Kalyani ,Nadia(W.B),India
Email: jnpc193@yahoo.com

T

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 04, Pages: 210-216 (2009)

211

be decrypted using the private key. The keys for the RSA
algorithm are generated the following way:
Choose two dis tinct prime numbers p and q. For security
purposes, the integers p and q should be chosen uniformly
at random and should be of similar bit-length. Prime integers
can be efficiently found using a Primality test. Compute n =
p*q. n is used as the modulus for both the public and private
keys. Compute the totient: f (n) = (p-1)*(q-1). Choose an
integer e such that 1<e< f (n), and e and f (n) are coprime. e
is released as the public key exponent. Choosing e having a
short addition chain results in more efficient encryption.
Determine d (using modular arithmetic) which satisfies the
congruence relation d*e = 1(mod f (n)). d is kept as the
private key exponent. The public key consists of the
modulus n and the public (or encryption) exponent e. The
private key consists of the modulus n and the private (or
decryption) exponent d which must be kept secret.
2.2 Encryption
Alice transmits her public key (n,e) to Bob and keeps the
private key secret. Bob then wishes to send message M to
Alice [12], [10], [5]. He first turns M into an integer 0<m< n
by using an agreed-upon reversible protocol known as a
padding scheme . He then computes the ciphertext c
corresponding to: c=me(mod n). This can be done quickly
using the method of exponentiation by squaring. Bob then
transmits c to Alice.
2.3 Decryption
Alice can recover m from c by using her private key exponent
d by the following computation: m=cd(mod n).
Given m, she can recover the original message M by
reversing the padding scheme.
The above decryption procedure works because:
m=(me)d(mod n) =med(mod n).
Now, since e*d=1+k * f (n),
med=m1+ k* f (n) =m*(mk) f (n) =m(mod n)
The last congruence directly follows from Euler's theorem
when m is relatively prime to n. By using the Chinese
remainder theorem it can be shown that the equations hold
for all m. This shows that the original message is retrieved:
cd=m(mod n).

3. METHODS FOR ARITHMETIC OPERATIONS OF TWO
LARGE NUMBERS
3.1 Addition
Step 1 Take two numbers as Strings as input.
Step 2 Compute the length of two Strings.
Step 3 If the lengths are equal go to Step 4 else add zeros in
front of the String of smaller length.
Step 4 If the lengths of two Strings are equal add a zero to
each String which will handle if there is a carry.
Step 5 Take another two arrays of integer of the length equal
to the present length of the Strings. Initialize one of them to
all zeros which will hold the carry if any.
Step 6 The elements of the array which will hold the sum, is
obtained by adding the elements of the initial two integer
arrays and the carry array.
Step 7 The carry array elements are obtained by the
operation as carry [i-1] = (a[i] + b[i])/10 where I denotes the
index.
Step 8 Convert the array of sum to String and return.

3.2 Subtraction
Step 1 Take two numbers as Strings as input.
Step 2 Compute the length of two Strings.
Step 3 If the lengths are equal go to Step 4 else add zeros in
front of the String of smaller length.
Step 4 Take another array of integers of the number elements
equal to the length of the Strings at present.
Step 5 If there is a borrow, subtract one from the previous
indexed element if it is greater than zero els e set the previous
element to 9 and continue Step5 until there is any element
greater than zero.
Step 6 Convert the result obtained to String and return.
3.3 Multiplication
Step 1 Take the two numbers as Strings as input.
Step 2 Convert the Strings into array of characters and
subsequently into array of numbers.
Step 3 Compute partial products for each of the element and
add the partial product to a variable initially set to zero.
Step 4 The partial product is computed with the above
addition algorithm.
Step 5 The final sum is the required product.
3.4 Division
3.4.1 Quotient
Step 1 Take the two numbers as Strings as input.
Step 2 If the length of the first (l1) to the second (l2) String
differs by 1or less compute quotient by using a loop which
counts the number of iterations for the subtraction of divisor
from the dividend else go to Step 3.
Step 3 Take the substring of first l2+1 characters of the first
String. Compute the quotient by using a loop which counts
the number of iterations for the subtraction of divisor from
the present dividend of length l2+1, and find the remainder.
Step 4 Concatenate the next positioned character in the first
String to the remainder and find the quotient for the second
String and the new String obtained.
Step 5 Concatenate the quotient obtained to the previous
quotient. Compute remainder.
Step 6 Repeat Steps 4 and 5 until no characters left for first
String.
Step 7 The quotient obtained in the final step is the required
quotient.
3.4.2 Remainder
Step 1 Take the two numbers as Strings as input.
Step 2 If the length of the first (l1) to the second (l2) String
differs by 1or less compute quotient by using a loop which
counts the number of iterations for the subtraction of divisor
from the dividend else go to Step 3.
Step 3 Take the substring of first l2+1 characters of the first
String. Compute the quotient by using a loop which counts
the number of iterations for the subtraction of divisor from
the present dividend of length l2+1, and find the remainder.
Step 4 Concatenate the next positioned character in the first
String to the remainder and find the quotient for the second
String and the new String obtained.
Step 5 Concatenate the quotient obtained to the previous
quotient. Compute remainder.
Step 6 Repeat Steps 4 and 5 until no characters left for first
String.
Step 7 The remainder obtained in the final step is the
required remainder.

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 04, Pages: 210-216 (2009)

212

3.5 GCD
Step 1 Take the two numbers as String.
Step 2 Compute the modulus and swap the divisor and
remainder as dividend and divisor. Repeat Step 2 until the
modulus is zero.
Step 3 Return the divisor.

4. IDENTITIES
The existing trial division method cannot be applied for large
integer if it is beyond the compiler limit. To Compute
(a*b)%n and (a+b)%n for large numbers a and b as follows.
From division algorithm [11], [6] it can be expressed any
integer as a= p1*n+q1; b=p2*n+q2; for a given n, a, and b
and for some p1, q1, p2, q2. So, (a*b)%n and (a+b)%n can be
rewritten as (a*b)%n=((p1*n+q1)*(p2*n+q2))%n =
(p1*p2*n2 + p1*q2*n + p2*q1*n + q1*q2)%n
=(q1*q2)%n=((a%n)*(b%n))%n
(a+b)%n= ((p1+p2)*n+q1+q2)%n = (q1+q2)%n =
((a%n)+(b%n))%n. Hence,
(a*b)%n = ((a%n)*(b%n))%n
(a+b)%n = ((a%n)+(b%n))%n

5. MODIFIED TRIAL DIVISION ALGORITHM
Step 1 Take the input number as String.
Step 2 Convert the String into array of integers.
Step 3 Contrary to the exact square root for large number a
number greater than the square root near the exact square
root is taken instead which is cost effective with respect to
time.
Step 4 Compute the length of the String. If it is less than
twice the number of digits that a particular compiler
supports, then go to Step 5 else go to Step 9.
Step 5 Take a function which will take the value of the array
element, the index and the length of the String concerned
and the number with which the modulus is to be calculated.
Increment the index.
Step 6 Multiply the element with 10 find the modulus and
perform the operation iteratively and subtract 1 from length-
index until it reaches 0. Compute moduli each time and add,
compute the modulus of the sum. Go to Step 3 until all
elements are exhausted.
Step 7 The final modulus obtained is the required modulus
compared to zero. If the modulus results to zero, it is not
prime.
Step 8 The number of numbers with which the input number
is to be compared is equal to near_square -root(input
number)/2; only the odd numbers below near_square-
root(input number) are only compared.
Step 9 Compute the modulus for large number. If it matches
the String “0” in any case the number is composite. If the
number space for the number concerned is exhausted and
none gives the modulus as “0”, hence the number is prime.

6. RSA FOR LARGE NUMBERS BEYOND THE RANGE OF
COMPILER LIMIT USING MODIFIED TRIAL DIVISION
ALGORITHM
6.1 Key Generation

Step 1 Choose two large number beyond the compiler limit
as strings
Step 1.1 If the length is less than 2*n-6 where n denotes the
maximum number of decimal digits that a particular compiler
supports convert the strings into array of integers else
subtract the numbers, below the near_squarertoot of the
number equivalent o he string, iteratively from the strings
following the method of subtraction (3.1) with which the
given string is to be compared.
Step 1.2 The moduli obtained (3.4.1) for each step is
compared to 0. If in any case the modulus turns out to be
zero the number is not prime, else the number is prime.
Step 1.3 If the length is less than 2*n-6, the elements of the
array along with the index and length of th string are fed to a
function as arguments which returns the modulus. If each of
the moduli tuns out to be non-zero the number is prime else
the number is not prime.
Step 1.4 Compute the above methods for both the strings
and thus p and q are selected.
Step 2 Convert p an q into array of integers.
Step 3 To compute the value of n=p*q . It is computed with
the implementation of the partial product and adding the
partial products by adding element by element and handling
the carry if any(3.3).
Step 4 Compute the value of f =(p-1)*(q-1). The subtraction
of 1 from p and q are obtained by the implementation of the
subtraction of large numbers where subtraction is done by
element by element and the borrow is handled likewise. Then
f is computed with the multiplication with partial products
(3.2).
Step 5 Compute the value of e relatively prime to f less than
f . The gcd(e, f) is calcuted and convert the result to String,
compare it to “1”. If it is equal to 1 e is chosen (3.5).
Step 6 Compute the value of d by using a loop for k in the
equation e*d=1+ f*k. If d is equal to 1 go to Step 5.
6.2 Encryption
Step 1 Input a plain text file.
Step 2 Convert the integer value from file into String.
Step 3 Convert the String into array of integers.
Step 4 Compute arithmetic operations as per RSA algorithm
on the array of numbers (4).
Step 5 Obtain the result as an array of integers.
Step 6 Convert the array of integers as String to write to the
output file as cipher text .
6.3 Decryption
Step 1 Input a cipher text file.
Step 2 Convert the integer value from file into String.
Step 3 Convert the String in to array of integers.
Step 4 Compute arithmetic operations as per RSA algorithm
on the array of numbers (4).
Step 5 Obtain the result as an array of integers.
Step 6 Convert the array of integers as String to write to the
output file as plain text .
6.4 Exa mple
Choose two numbers
p = 796633327000000971
q = 908819900008701977
Check the first number:
1. The number is not divisible by 2.
2. Check the number if it is divisible by 3.

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 04, Pages: 210-216 (2009)

213

This checking will continue until the final modulus for each
testing number is non-zero upto a number near to the square
root = 899999999.
 796633327000000971 element index length
= 700000000000000000 = 7 0 18
+ 90000000000000000 = 9 1 18
+ 6000000000000000 = 6 2 18
+ 600000000000000 = 6 3 18
+ 30000000000000 = 3 4 18
+ 3000000000000 = 3 5 18
+ 300000000000 = 3 6 18
+ 20000000000 = 2 7 18
+ 7000000000 = 7 8 18
+ 0 = 0 9 18
+ 0 = 0 10 18
+ 0 = 0 11 18
+ 0 = 0 12 18
+ 0 = 0 13 18
+ 0 = 0 14 18
+ 900 = 9 15 18
+ 70 = 7 16 18
+ 1 = 1 17 18
(7×1017) %3=((7%3)×1017)%3=(1×1017)%3=1×1=1
(9×1016)%3=((9%3)×1016)%3=(0×1016)%3=0×1=0
. =0
. =0
. .
(9 × 102)%3 = ((9%3) ×102)%3 = (0 ×102)%3 =
(0×10)%3=(0×10)%3 = 0
(7×10)%3 = ((7%3) ×(10%3))%3 =1×1=1
(1%3)=1.

Final modulo =
(1+0+0+0+0+0+0+2+1+0+0+0+0+0+0+0+1+1)%3=6%3=0
So the number is not prime, so we choose the nearest prime
number 796633327000000969.
Check the second number.
1. The number is not divisible by 2
2. Check the number if it is divisible by 3
3. Next check with 5, then with 7 and so on if any of the final
moduli is zero, then the upto 999999999 .
 908819900008701977 element index length
= 900000000000000000 = 9 0 18
+ 0 = 0 1 18
+ 8000000000000000 = 8 2 18
+ 800000000000000 = 8 3 18
+ 10000000000000 = 1 4 18
+ 9000000000000 = 9 5 18
+ 900000000000 = 9 6 18
+ 0 = 0 7 18
+ 0 = 0 8 18
+ 0 = 0 9 18
+ 0 = 0 10 18
+ 8000000 = 8 11 18
+ 700000 = 7 12 18
+ 0 = 0 13 18
+ 1000 = 1 14 18
+ 900 = 9 15 18
+ 70 = 7 16 18
+ 7 = 7 17 18

This number turns out to be divisible by 61. So, the nearest
prime number is 908819900008701973.

Two primes are chosen as:
p = 796633327000000969
q = 908819900008701973
n = 796633327000000969*908819900008701973
 796633327000000969
 × 908819900008701973

Table 1 Computing Multiplication

Partial Products Computing Partial Products [Table 2.1(a)&(b)]

2389899981000002907 796633327000000969+796633327000000969+
796633327000000969

55764332890000067830

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969

716969994300000872100

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969

796633327000000969000 796633327000000969
0

557643328900000678300000

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969

6373066616000007752000000

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969

0
0
0

0

716969994300000872100000000000

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969

7169699943000008721000000000000

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969

7966333270000009690000000000000 796633327000000969

6373066616000007752000000000000
00

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969

6373066616000007752000000000000
000

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969

0

7169699943000008721000000000000
00000

796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969+796633327000000969+
796633327000000969

n = 2389899981000002907 + 55764332890000067830 +
716969994300000872100 + 796633327000000969000 + 0 +
557643328900000678300000 + 6373066616000007752000000 +
0 + 0 + 0 + 0 + 716969994300000872100000000000 +
7169699943000008721000000000000 +
7966333270000009690000000000000 +
637306661600000775200000000000000 +

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 04, Pages: 210-216 (2009)

214

6373066616000007752000000000000000 + 0 +
716969994300000872100000000000000000
(Likewise Table 2.1a and Table 2.1b)
n = 723996220587740462348937279432211837

To compute 796633327000000969 + 796633327000000969 +
796633327000000969

Table 2.1a Computing Addition

C 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
N1 0 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9
N2 0 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9
R 1 5 8 6 6 6 6 6 5 4 0 0 0 0 0 1 3 8

Table 2.1b Computing Addition

C 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0
N1 0 1 5 8 6 6 6 6 6 5 4 0 0 0 0 0 1 3 8
N2 0 0 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9
R 0 2 3 8 3 2 9 9 9 8 1 0 0 0 0 0 2 0 7

Table 2.1c Computing Subtraction

N1 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9
N2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
R 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 8

f = (p -1)*(q-1) = (796633327000000969-
1)*(908819900008701973-1) [Table 2.1c]
 = 796633327000000968*908819900008701972 (Likewise
Table 2.1a and Table 2.1b)
 = 723996220587740460643484052423508896
Choose e relatively prime to f and less than f.
e is chosen as e = 597730678320781
gcd(e, f) = gcd (597730678320781,
 723996220587740460643484052423508896)
 =gcd(723996220587740460643484052423508896,
597730678320781)
 =gcd(597730678320781,522314937592172)
 =gcd(522314937592172, 75415740728609)
 =gcd(75415740728609, 69820493220518)
 =……………………….
 =……………………….
 =………………………
 =………………………
 =gcd(1,1)
 =1
From the equation e*d=1+ f*k
597730678320781*350096237795509290502435457320771333
=
1+723996220587740460643484052423508896*28903916311218
2
d is calculated as d =
350096237795509290502435457320771333

7. RESULTS

The input plain text , cipher text and text after decryption is
describe in section 7.1 and the time is needed in different
operation is described in section 7.2. To test a number is
prime or not is given in table 4. The encryption and
decryption time for different file size is furnished table 4.

7.1 Encryption and Decryption
Encryption
A text file is taken as input which contains the plain text:
"This is an implementation of RSA algorithm.
The cipher text is :
321608683768299940577790416009023267545400903235839835
977883535534127551
383486098927907800508745124527030055372567718327019004
888049249883114843
305006651068030347376681625720317589383486098927907800
508745124527030055
372567718327019004888049249883114843305006651068030347
376681625720317589
200616657248894833780707759391432479109429525023508137
678629803185561222
305006651068030347376681625720317589383486098927907800
508745124527030055
238921368540739032221761368410667592927949805042214929
71328847789561009
541356901940365578531790042510415181242765624815106139
82071022901458181
238921368540739032221761368410667592242765624815106139
82071022901458181
109429525023508137678629803185561222247666352896593797
503075179955093248
200616657248894833780707759391432479247666352896593797
503075179955093248
383486098927907800508745124527030055180575332595018557
036123611699469825
109429525023508137678629803185561222305006651068030347
376681625720317589
180575332595018557036123611699469825489322524165024894
693552060448279197
305006651068030347376681625720317589628929105710247896
601309516101856837
500940395461107237765769724850388916349586590894424571
185583633154317592
305006651068030347376681625720317589200616657248894833
780707759391432479
541356901940365578531790042510415181509158580789464414
827778737891311194
180575332595018557036123611699469825125599208770405882
129774350203584684
383486098927907800508745124527030055247666352896593797
503075179955093248
545400903235839835977883535534127551238921368540739032
221761368410667592
212411490368907346642902570781305521
Decryption
The plain text recovered as:
This is an implementation of RSA algorithm.
7. 2 Time for different operation

Table 3. Time to test primes using modified trial division

Digits Prime Time to Compute

3 101 <1 sec
3 751 <1 sec
4 1201 < 1sec
4 9091 < 1 sec
5 10753 < 1 sec
5 76801 < 1 sec

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 04, Pages: 210-216 (2009)

215

6 160001 < 1 sec
6 980801 < 1 sec
7 1146881 < 1 sec
7 9011201 < 1 sec
8 12600001 < 1 sec
8 99328001 < 1 sec
9 104857601 < 1 sec
9 756100001 < 1 sec
10 1027200001 < 1 sec
10 9524994049 1 sec
11 10256250001 1 sec
11 97656250001 2 secs
12 100907200001 2 secs
12 947147262401 3 secs
13 1079916250001 5 secs
13 9982699110401 8 secs
14 12123750000001 10 secs
14 87770788000001 25 secs

15 101702694862849 53 secs

15 944377409044481 113 secs
16 1136591040000001 127 secs

16 9502720000000001 305 secs

17 12136000000000001 702 secs

17 95348273971200001 1410 secs
18 100663296000000001 1630 secs
18 908800000000000001 3990 secs

Table 4. Time to encrypt and decrypt Text files of different
sizes

File Size Encryption Time Decryption Time

1 KB 4 secs 210 secs
2 KB 8 secs 420 secs
3 KB 12 secs 641 secs
4 KB 16 secs 855 secs
5 KB 20 secs 1070 secs
6 KB 24 secs 1290 secs
7 KB 28 secs 1500 secs
8 KB 32 secs 1721 secs
9 KB 36 secs 1943 secs
10 KB 39 secs 2174 secs

8. CONCLUSION AND FUTURE WORKS
In this paper, modified trial division algorithm has been used
to find large prime numbers. Even of the integer number be
beyond the compiler limit. The time complexity of this
algorithm will be always less than the existing trial division
algorithm as to check for primality only odd numbers have
been used. This method can be used in personal computer
for implementation of RSA algorithm with large integer.

REFERENCES

 [1] Boneh and Durfee, “Cryptanalysis of RSA with private
key d less than n0.292”, IEEETIT: IEEE Transactions on
Information Theory, Volume 46, Issue 4, Jul 2000 pp:1339–
1349.

[2] Whitfield Diffie and Martin E. Hellman, “New directions
in cryptography”, IEEE Transactions on Information Theory
IT-22, no. 6, 1976, pp644-654.

[3] Tatsuaki Okamoto and Shigenori Uchiyama, “A new
public key cryptosystem as secure as factoring”, Lecture
notes in Computer Science 1403 (1998), 308-318. MR 1 729
059

[4] Ron L. Rivest, Adi Shamir, and Len Adleman, “A method
for obtaining digital Signatures and public-key

cryptosystems”, Communications of the ACM 21 (1978),
pp 120-126.

[5] M. Wiener, “Cryptanalysis of short rsa secret
exponents”, IEEE Transactions on Information Theory 36
(1990), pp.553-558.

[6] William Dunham, “Euler – the master of us all”, The
Mathematical Associat ion of America, 1999.
ISBN: 0883853280

[7] Steven Levy, “Crypto-secrecy and privacy in the new
code war”, Penguin Books, 2000

[8] Alfred J Menezes, Paul C. van Oorschot, and Scott A.
Vanstone, “Handbook of applied cryptography”, CRC
Press, 1996.

[9] Hans Riesel, “Prime numbers and computer methods for
factorization” (2nd ed.), Birkhauser Verlag, Basel,
Switzerland, Switzerland, 1994.

[10] Douglas R. Stinson, “Cryptography, theory and
practice”, CRC Press, 1995.

[11] David M. Burton, “Elementary Number Theory” (2nd
ed), Universal Books Stall, New Delhi, 2004.

[12] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in p”,
Preprint, Aug. 6, 2002. Date of access 25.04.2009.
http://www.cse.iitk.ac.in/primality.pdf.

Authors Biography

Satyendra Nath Mandal has received his
B.Tech & M.Tech in Computer Science &
Engineering from university of Calcutta, West
Bengal India. He is now working as a lecturer in
department of Information Technology at

Kalyani Govt. Engg. College , Kalyani , Nadia, West Bengal,
India. His field of research areas includes cryptography &
network Security, fuzzy logic, Artificial Neural Network,
Genetic Algorithm etc. He has about 25 research papers in
national and International conferences. His three research
papers have been published in International journal.

Kumarjit Banerjee has received his B. Tech
degree in Computer Science and Engineering form
West Bengal University of Technology, West
Bengal, India. His field of interest includes Image

Processing, Number Theory and Artificial Intelligence.

Dr. Biswajit Maiti is a reader of Dept. of Physics
in Kalyani Govt. Engg. College. His has 11
international journals and 3 conference papers.
His area of Specializations are Synthesis and

characteriszation of semiconducting Meterial.

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 04, Pages: 210-216 (2009)

216

Dr. J. Paul Choudhury(Jagannibas Paul
Choudhury) completed Bachelor of Electronics
and Tele-Communication Engineering(Hons)
from Jadavpur University, Kolkata M. Tech in

Electronics and Electrical Engineering under the
specialization of Control and Automation Engineering from
Indian Institute of Technology, Kharagpur and. thereafter
completed PhD(Engg) from Jadavpur University, Kolkata. At
present Dr. Paul Choudhury is with Information Technology
Department, Kalyani Government Engineering College, Dt
Nadia, West Bengal, India, and he has 60 publications in
National and International Journals and in Conference
Proceedings. His field of interest is Soft Computing, Data
Base, Object Oriented Methodology, etc.

